Welcome to Biogen’s 2015 R&D Day

George Scangos, Ph.D.
Chief Executive Officer
Forward-looking statements

These presentations contain forward-looking statements, including statements relating to: clinical trials; potential safety and clinical effects of research and development programs; and pipeline potential and progress. These forward-looking statements may be accompanied by such words as “anticipate,” “believe,” “could,” “estimate,” “expect,” “forecast,” “intend,” “may,” “plan,” “potential,” “project,” “target,” “will” and other words and terms of similar meaning. You should not place undue reliance on these statements.

These statements involve risks and uncertainties that could cause actual results to differ materially from those reflected in such statements, including: risks associated with clinical trials, including our ability to adequately manage clinical activities, unexpected concerns that may arise from additional data or analysis obtained during clinical trials, regulatory authorities may require additional information or further studies or may fail to approve or may delay approval of our drug candidates; the risk that positive results in a clinical trial may not be replicated in subsequent or confirmatory trials or success in early stage clinical trials may not be predictive of results in later stage or large scale clinical trials or trials in other potential indications; the occurrence of adverse safety events, restrictions on use with our products or product liability claims; our dependence on collaborators and other third parties for the development and commercialization of products and other aspects of our business, which are outside of our control; and the other risks and uncertainties that are described in the Risk Factors section of our most recent annual or quarterly report and in other reports we have filed with the SEC. These statements are based on our current beliefs and expectations and speak only as of the date of these presentations. We do not undertake any obligation to publicly update any forward-looking statements.
Biogen 2015 R&D Day Agenda

Agenda: Morning Session

<table>
<thead>
<tr>
<th>Time</th>
<th>Topic</th>
<th>Speaker</th>
</tr>
</thead>
<tbody>
<tr>
<td>10-10:05am</td>
<td>Introduction</td>
<td>George Scangos, PhD Chief Executive Officer</td>
</tr>
<tr>
<td>10:05-10:25am</td>
<td>Biogen R&D strategy and capabilities</td>
<td>Al Sandrock, MD, PhD Chief Medical Officer</td>
</tr>
<tr>
<td>10:25-10:40am</td>
<td>MS remyelinating programs: Anti-LINGO-1 and BIIB061</td>
<td>Diego Cadavid, MD Senior Medical Director</td>
</tr>
<tr>
<td>10:40-10:55am</td>
<td>Alzheimer's disease strategy including E2609 and BAN2401</td>
<td>Samantha Budd Haeberlein, PhD VP Clinical Development</td>
</tr>
<tr>
<td>10:55-11:10am</td>
<td>Aducanumab for early Alzheimer's disease</td>
<td>Jeff Sevigny, MD Senior Medical Director</td>
</tr>
<tr>
<td>11:10-11:25am</td>
<td>SMA and nusinersen (SMN<sub>Q</sub>) program update</td>
<td>Wildon Farwell, MD Senior Medical Director</td>
</tr>
<tr>
<td>11:25-11:40am</td>
<td>MT-1303 for autoimmune diseases</td>
<td>Jeff Bornstein, MD Senior Medical Director</td>
</tr>
<tr>
<td>11:40-12:15pm</td>
<td>Q&A</td>
<td></td>
</tr>
<tr>
<td>12:15-12:45pm</td>
<td>Lunch</td>
<td></td>
</tr>
</tbody>
</table>
Biogen 2015 R&D Day Agenda (continued)

<table>
<thead>
<tr>
<th>Breakout Session</th>
<th>Agenda: Afternoon Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:00-2:00pm</td>
<td>Breakout Session</td>
</tr>
<tr>
<td></td>
<td>Track One:</td>
</tr>
<tr>
<td></td>
<td>• BIIB054 for Parkinson’s disease</td>
</tr>
<tr>
<td></td>
<td>• Amyotrophic lateral sclerosis</td>
</tr>
<tr>
<td></td>
<td>• Gene therapy & gene editing</td>
</tr>
<tr>
<td></td>
<td>• Jesse Cedarbaum, MD</td>
</tr>
<tr>
<td></td>
<td>VP Clinical Development</td>
</tr>
<tr>
<td></td>
<td>• Donald R. Johns, MD</td>
</tr>
<tr>
<td></td>
<td>VP Clinical Development</td>
</tr>
<tr>
<td></td>
<td>• Olivier Danos, PhD</td>
</tr>
<tr>
<td></td>
<td>SVP Cell & Gene Therapy</td>
</tr>
<tr>
<td></td>
<td>Breakout Session</td>
</tr>
<tr>
<td></td>
<td>Track Two:</td>
</tr>
<tr>
<td></td>
<td>• The future of SMARTER drug development with biomarkers</td>
</tr>
<tr>
<td></td>
<td>• Value based medicine</td>
</tr>
<tr>
<td></td>
<td>• Richard Hargreaves, PhD</td>
</tr>
<tr>
<td></td>
<td>VP Neuropharmacology and Biomarkers</td>
</tr>
<tr>
<td></td>
<td>• Ajay Verma, MD, PhD</td>
</tr>
<tr>
<td></td>
<td>VP Experimental Medicine</td>
</tr>
<tr>
<td></td>
<td>• Richard A. Rudick, MD</td>
</tr>
<tr>
<td></td>
<td>VP Development Sciences</td>
</tr>
<tr>
<td>2:15-2:30pm</td>
<td>Raxatrigine in neuropathic pain</td>
</tr>
<tr>
<td></td>
<td>Simon Tate, PhD</td>
</tr>
<tr>
<td></td>
<td>VP Pain Research Therapeutic Area</td>
</tr>
<tr>
<td>2:30-2:45pm</td>
<td>Tysabri in stroke</td>
</tr>
<tr>
<td></td>
<td>Jake Elkins, MD</td>
</tr>
<tr>
<td></td>
<td>Senior Medical Director</td>
</tr>
<tr>
<td>2:45-2:55pm</td>
<td>Research in Biogen: Why and how</td>
</tr>
<tr>
<td></td>
<td>Spyros Artavanis-Tsakonas, PhD</td>
</tr>
<tr>
<td></td>
<td>Chief Scientific Officer</td>
</tr>
<tr>
<td>2:55-3:10pm</td>
<td>The new neurology at Biogen</td>
</tr>
<tr>
<td></td>
<td>Chris Henderson, PhD</td>
</tr>
<tr>
<td></td>
<td>VP Neurology Research</td>
</tr>
<tr>
<td>3:10-3:25pm</td>
<td>Vision for neuroimmunology in neurodegeneration</td>
</tr>
<tr>
<td></td>
<td>Richard M. Ransohoff, MD</td>
</tr>
<tr>
<td></td>
<td>Senior Research Fellow & VP Neuroimmunology</td>
</tr>
<tr>
<td>3:25-3:55pm</td>
<td>Q&A</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Biogen R&D strategy and capabilities

Alfred Sandrock, MD, PhD
EVP, Neurology Discovery and Development
Chief Medical Officer
Organize for long-term success

Three focus areas

Specialty medicines
- Multiple Sclerosis
- Inflammatory Bowel Disease (IBD)

Neurodegeneration
- Alzheimer’s Disease
- Parkinson’s
- ALS
- Neuroimmunology

Rare diseases
- Hemophilia
- Spinal Muscular Atrophy (SMA)
- Neuropathic Pain
The right people: World-class researchers

Internal (recent) Hires
- Ransohoff (Neuroimmunology, Cleveland Clinic)
- Henderson (Neurobiology/ALS, Columbia U.)
- Artavanis-Tsakonas (Dev. Genetics/Neurodeg, Harvard.)
- Muskavitch (Neuro-Epigenetics, BC/Indiana)
- Duffield (Dev. Biology/Stress Pathways, U. Washington)
- Danos (Gene Therapy, UCL/CNRS)
- Rudick (Mellen MS center, Cleveland Clinic)
- Johns (ALS, Harvard/Novartis)
- Cedarbaum (Parkinson’s, Cornell)
- Hargreaves (Biomarkers, Merck)
- Verma (Experimental medicine, US Military/Pfizer)
- Fisher (Biomedical imaging, Cleveland Clinic)
- *Kirchhausen* (Membrane traffic, Harvard).
- *Walz* (Structure/Cryo EM, Rockefeller)

* Part time Academic experts

Academic Consortia:
- ALS, Myelination, PML, Epigenetics, Sickle Cell
- Human Proteome, Retromere

External Collaborations
What

Unmet Need

Core Competency

Validated Targets

Development Feasibility

Adjacencies
- Ophthalmology
- Neuropathic pain

MS
AD
PD
ALS
What

Unmet Need

Core Competency

Validated Targets

Development Feasibility

Adjacencies
- Ophthalmology
- Neuropathic pain

MS
AD
PD
ALS
How

Drug Discovery

Clinical Observations, Genetics, Exploratory Research

Drug

Biology

Disease

Pharmacology, Early Clinical Development

Late Clinical Development
Drug development: How to increase probability of success

• **Begin with disease-relevant biology**

• **Obtain rapid, robust human proof of concept (POC)**
 – De-risk late stage development costs
 – Pursue anti-sense oligonucleotide (ASO) or antibody approaches if target is amenable

• **Develop biomarker capabilities to overcome key challenges**
 – Biological (genetic) heterogeneity
 – Clinical heterogeneity
 – Inability to measure target engagement or the desired biological response
 – Inadequate measurements of disease progression
The example of aducanumab

• **Begin with disease-relevant biology that is in the causal pathway to disease**
 – Genetics and human pathology pointed to the amyloid hypothesis

• **If ASO or Ab treatment possible, pursue to human POC as efficiently as possible**
 – Found aducanumab at Neurimmune

• **Overcome drug development challenges**
 – Clinical heterogeneity: mild/prodromal, MMSE>20
 – Biological (Genetic) Heterogeneity
 • apoE status
 • Selection with amyloid imaging – AV45 PET positivity at baseline (60% rejection rate)
 • CSF evidence of protein abnormalities – hallmarks of disease
 – Inability to measure target engagement or targeted biological response
 • Amyloid AV45 PET imaging at 6 months, 12 months
 • CSF beta-amyloid 42 and tau – in progress
 – Inadequate measurements of disease progression: brain metabolism, cognition
Learning from our aducanumab Phase 1b trial

Drug → Dose → Plasma PK → Tissue Distribution → Target Engagement → Biology → Pharmacodynamic (biological) response → Biomarker of Efficacy (Surrogate) → Clinical Efficacy

Biomarker of Safety → Clinical Safety

T2W MRI → MMSE, CDR-sb → Adverse events (subset)
Our collaboration with ISIS allows us to take the shortest path from gene to drug

Use ASOs to target RNA

- People with Disease
- Gene
- Pathobiology
- Drug Candidate
- Drug
- Target

- SMA
- Familial ALS (SOD, C9orf)
- DMPK

- Clinical Trials
- Toxicology
- Animal Models
- DMPK
- Chemistry
- Assays
R&D strategy

• What
 – Pursue programs with high unmet need that will make a meaningful impact on patients’ lives; avoid incremental gain
 – Choose targets in biological pathways that are validated by human genetics or reliable clinical observations
 – Leverage biomarkers and ensure a clear regulatory pathway to approval
 – Choose diseases and therapeutic modalities to fit our core competencies or leverages our partners’ capabilities

• How
 – De-risk as expediently as possible; take the shortest available path to robust clinical proof of concept
 – Once proof of concept is established, confirm benefit/risk with urgency; seek approval with superior labels in key territories globally
 – Don’t forget the payors
Conclusions

• Aided by genetics, we are in an era of potentially redefining neurologic diseases in actionable molecular pathophysiologic terms

• We believe we have the capability to make drug development tools that decrease the risk of drug development in neurology

• We have become better at measuring disease progression with sensitive outcome measures

• We have new therapeutic approaches that may allow us to go rapidly from gene to drug, e.g. with ASOs
MS remyelinating programs: Anti-LINGO-1 and BIIB061

Diego Cadavid, MD
Senior Medical Director
Headlines

• There is failure of remyelination in MS

• Potential for anti-LINGO-1 as first treatment for remyelination in MS

• Proof-of-biology study of anti-LINGO-1 in Acute Optic Neuritis recently completed

• Proof-of-concept study in MS is fully enrolled with readout mid-2016

• An oral remyelination compound is Phase 2 ready, BIIB061
Key pathophysiology in relapsing multiple sclerosis

Relapsing MS

Secondary Progressive MS

Myelin loss

Axonal loss

Accumulation Of Disability

Relapses

Inflammation

TIME (years)
Demyelinated MS lesions have myelin forming cells

Healthy control

Normal appearing brain cortex in MS

Demyelinated MS cortical plaque

Myelin stain

Myelin forming cells stain

Ann Neurol 2012; 72;918-926
Myelin forming cells are found even in chronic demyelinated MS lesions

A. Demyelinated MS lesion with clusters of premyelinating oligodendrocytes

B–D. Premyelinating oligodendrocytes extending processes orientated parallel to demyelinated axons but without myelination

Anti-LINGO-1 enhances myelination *in vitro* and re-myelination *in various rodent models*.
RENEW: Phase 2 study for acute optic neuritis (AON)

Goal: Determine proof of biology and safety of anti-LINGO-1 after a first episode of AON

- Double blinded, placebo controlled study at 100 mg/kg with 82 patients
- Primary endpoint: improvement in optic nerve conduction latency by FF-VEP
- MF-VEP substudy (N=39)

IV = intravenous; FF-VEP = full-field visual evoked potential; MF-VEP = multifocal visual evoked potential.

*For subjects with AON who had not already been treated.
Acute optic neuritis

Human visual pathway

The cerebral cortex receives the encoded images of the contralateral visual fields of both eyes.
Primary endpoint:
Recovery of FF-VEP latency - indicative of remyelination

Week 24
- Placebo:
 - Adjusted mean change = -7.55 ms
 - 95% CI: -15.12 to 0.01
 - P = .05

- Anti-LINGO-1:
 - Adjusted mean change = -3.48 ms
 - 95% CI: -10.61 to 3.65
 - P = .33

Week 32
- Placebo:
 - Adjusted mean change = -9.13 ms
 - 95% CI: -16.11 to -2.14
 - P = .01

- Anti-LINGO-1:
 - Adjusted mean change = -6.06 ms
 - 95% CI: -12.66 to 0.53
 - P = .07

*Adjusted mean change in optic nerve conduction latency (measured by FF-VEP) in the affected eye compared with the unaffected fellow eye at Baseline. Per protocol (PP): placebo, n=36; anti-LINGO-1, n=33. Intent to treat (ITT): n=41, both groups. Analysis by ANOVA (Week 24) and MMRM (Week 32).

Better MF-VEP amplitude preservation in anti-LINGO-1-treated group suggests neuroprotection

Affected Eye:

<table>
<thead>
<tr>
<th></th>
<th>Baseline</th>
<th>4</th>
<th>8</th>
<th>12</th>
<th>16</th>
<th>20</th>
<th>24</th>
<th>32</th>
</tr>
</thead>
<tbody>
<tr>
<td>Placebo</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anti-LINGO-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fellow Eye:

<table>
<thead>
<tr>
<th></th>
<th>Baseline</th>
<th>4</th>
<th>8</th>
<th>12</th>
<th>16</th>
<th>20</th>
<th>24</th>
<th>32</th>
</tr>
</thead>
<tbody>
<tr>
<td>Placebo</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anti-LINGO-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Cadavid et al., Presented at the 31st Congress of the European Committee for Treatment and Research in Multiple Sclerosis (ECTRIMS), 09 October 2015, Barcelona, Spain.

Biogen.
SYNERGY: Ongoing Phase 2 proof-of-concept study in relapsing forms of MS

<table>
<thead>
<tr>
<th>Screening</th>
<th>Placebo (88 participants)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline and randomization</td>
<td>Anti-LINGO-1 3 mg/kg (44 participants)</td>
</tr>
<tr>
<td>IV infusion (in clinic) every 4 weeks</td>
<td>Anti-LINGO-1 10 mg/kg (88 participants)</td>
</tr>
<tr>
<td></td>
<td>Anti-LINGO-1 30 mg/kg (88 participants)</td>
</tr>
<tr>
<td></td>
<td>Anti-LINGO-1 100 mg/kg (88 participants)</td>
</tr>
<tr>
<td>All participants: IM IFNβ-1a every week</td>
<td></td>
</tr>
</tbody>
</table>

Population
- 80% RRMS
- 20% SPMS
- EDSS 2-6

Clinical and MRI endpoint in the SYNERGY Study

- **Disability**
 - EDSS progression
 - relapse recovery

- **Cognitive Function**
 - Information processing
 - learning and memory

- **Physical Function**
 - Timed walking
 - Upper limb function

- **Brain Atrophy**

- **Magnetization Transfer Ratio**
 - Change in brain Volumes

- **Diffusion Tensor Imaging**
 - Change in lesion diffusivity

BIIB061: Phase 2 ready potential oral remyelination therapy

• Different biological pathway from anti-LINGO-1
• Preclinical animal models demonstrate enhanced remyelination and axonal protection versus control
• Phase 1 SAD completed and MAD trial completing
 – Predictable/linear PK
 – Acceptable safety profile
• Anticipate Phase 2 study initiation 2016
Summary

- High unmet need for reparative treatments in MS
- Phase 2 RENEW study provided evidence of proof of biology
- Phase 2 SYNERGY study to determine clinical effect in MS – results expected mid-2016
- An oral remyelination candidate (BIIB061) is phase 2 ready
Alzheimer's disease strategy
• E2609 and BAN2401

Samantha Budd Haeberlein, PhD
VP Clinical Development
Biogen Alzheimer’s Disease strategy

Vision: A global leader, establishing aducanumab as a foundational therapy and building a portfolio of differentiated complementary therapies

Establish foundation
- Advance aducanumab
- Enable more patients to access treatment
 - Prevention
 - Diagnosis

Advance our programs
- Support BAN2401 and E2609 – including combinations
- Implement biomarkers to enable clinical decisions

Broaden impact
- Advance Tau programs
- Investigate new MOAs

Continue to evaluate external opportunities
An opportunity to change the disease

- Terrible disease with modest treatment options
- ~7 year lifespan after diagnosis
- 6th leading cause of death (US)
- ~5.3M patients diagnosed (US); expected 13.8M by 2050#
- ~200k pts under age 65 (US)#
- Estimated $200B+ cost (US)#
- ~44M people affected worldwide*

Alzheimer’s disease development efforts

<table>
<thead>
<tr>
<th>MOA</th>
<th>Discovery</th>
<th>Phase 1</th>
<th>Phase 2</th>
<th>Phase 3</th>
<th>Filing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aducanumab* (Anti-amyloid β mAb)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BAN2401* (Anti-amyloid β mAb)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E2609* (BACE inhibitor)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anti-Tau Molecules*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Additional MOAs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Collaboration program

Supporting imaging and biomarker activities
Key evidence that β-amyloid dysregulation is central to disease

Human Genetics

Dominantly inherited (APP, PS1, PS2) involved in processing of amyloid

Pathology

Pathological hallmarks
Amyloid-β (Aβ) plaques

Proof of Concept

Emerging clinical signals
(aducanumab, solanezumab, crenezumab)

APP: amyloid precursor protein; PS1/PS2: presenilin-1/presenilin-2
Potential to disrupt the disease cascade

- Soluble Aβ40
- Aβ peptide
- Aβ42
- Aβ peptide
- E2609*
- BAN2401*
- Aducanumab*
- β-secretase
- γ-secretase
- Synaptic impairment
- Tau Tangles
- Cytotoxicity
- Tau Agents*
- Dementia

* Collaboration program
<table>
<thead>
<tr>
<th>Target Engagement</th>
<th>Patient Population</th>
<th>Aducanumab & PRIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Doses limited by adverse events or tolerability reduce CNS target engagement and possibility to show efficacy</td>
<td>• Earlier AD trials did not screen patients for amyloid; approximately 25% patients enrolled without Alzheimer’s</td>
<td>• Binding highly selective for aggregated Aβ</td>
</tr>
<tr>
<td></td>
<td>• Patients enrolled in prior trials more advanced stage – potentially suboptimal population</td>
<td>• Phase 1b: early Alzheimer’s population (defined by cognition + amyloid PET imaging)</td>
</tr>
</tbody>
</table>

Biogen has leveraged past learnings in advancing Alzheimer’s trials
Biomarkers – Enabling our pipeline

Use of biomarkers in Alzheimer’s:
• In early clinical studies, to demonstrate **target engagement**
• To select **the right patients**
• To demonstrate **effect on disease** pathophysiology
Alzheimer’s starts many years prior to onset of symptoms
Attractive opportunity early in disease course

10-15% Conversion/year

Amyloid positive, cognition normal
At risk Population

Subjective memory decline
MCI due to AD / Prodromal

Cognitive and functional decline fulfilling dementia

Early AD

27%* of over 65’s - US at risk population

~13M

~8%# of over 65’s - US amnestic MCI pop.

~3.8M

5.3 M - Diagnosed with Alzheimer’s disease in the US

~1.4M
~1.6M
~2.3M

BAN2401 mAb to Aβ

<table>
<thead>
<tr>
<th>Molecule</th>
<th>• BAN2401 is a humanized IgG1 monoclonal antibody that selectively recognizes Aβ protofibrils</th>
</tr>
</thead>
<tbody>
<tr>
<td>Therapeutic Goal</td>
<td>• Expected to reduce the brain levels of toxic forms of Aβ</td>
</tr>
<tr>
<td>Reason to Believe</td>
<td>• High affinity and selectivity for Aβ protofibrils, resulting in slowing the clinical progression of AD</td>
</tr>
</tbody>
</table>
| Clinical Status | • Evaluated in a SAD and MAD study in subjects with mild to moderate AD.
• Ongoing global Ph2 study in subjects with early AD
• Ph2 study topline results anticipated in 2016 |

Murine mAb Model

- High affinity and selectivity for Aβ protofibrils

Eisai presentation at AD/PD in March 2011 (Barcelona, Spain)
BAN2401 Ph2 study

Population
- MCI due to AD and mild AD (Early AD)
- MMSE ≥22-30
- Stable concomitant medications
- Positive amyloid PET/CSF

Dose design
- **Placebo**
- 2.5 mg/kg: bi-weekly
- 5 mg/kg: bi-weekly
- 10 mg/kg: bi-weekly
- 5 mg/kg: once every 4 weeks
- 10 mg/kg: once every 4 weeks

Endpoints

Primary
- Change from baseline in the ADCOMS at 12 months
- Safety and tolerability

Secondary
- Change from baseline in the ADCOMS at 18 months
- Change from baseline in total hippocampal volume at 6, 12, and 18 Months
- Change from baseline at 12 and 18 months in brain amyloid levels as measured by amyloid PET

- Maximum planned sample size 800 subjects
- Bayesian design
- Frequent interim analyses to update randomization allocation
E2609 β-secretase inhibitor

<table>
<thead>
<tr>
<th>Molecule</th>
<th>CSF in Healthy volunteers; after 14d</th>
</tr>
</thead>
<tbody>
<tr>
<td>• E2609 is a highly potent beta-site amyloid precursor protein (APP)-</td>
<td></td>
</tr>
<tr>
<td>cleaving enzyme-1 (BACE1) inhibitor</td>
<td></td>
</tr>
<tr>
<td>Therapeutic Goal</td>
<td></td>
</tr>
<tr>
<td>• Stops the production of β-amyloid, aimed at slowing the disease</td>
<td></td>
</tr>
<tr>
<td>progression</td>
<td></td>
</tr>
<tr>
<td>Reason to Believe</td>
<td></td>
</tr>
<tr>
<td>• In Ph1 demonstrated target engagement (inhibition of BACE</td>
<td></td>
</tr>
<tr>
<td>activity), and lowering of CSF Aβ by >90%</td>
<td></td>
</tr>
<tr>
<td>Clinical Status</td>
<td></td>
</tr>
<tr>
<td>• Safe & well tolerated in Ph1 SAD and MAD studies</td>
<td></td>
</tr>
<tr>
<td>• Ongoing Ph2 safety study in subjects with AD</td>
<td></td>
</tr>
<tr>
<td>• Interim Ph2 safety results expected in 2016</td>
<td></td>
</tr>
</tbody>
</table>

- Dose-dependent reduction of CSF Aβ compared to baseline
- 55% reduction at 25mg & 89% at 200mg

Eisai Presentation at AAIC in July 2012 (Vancouver, Canada)
Aducanumab for early Alzheimer's disease

Jeff Sevigny, MD
Senior Medical Director
Program highlights

• Phase 1b study (PRIME) demonstrated proof of biology and concept

• Two pivotal Phase 3 studies (ENGAGE & EMERGE) have begun enrolling subjects with early AD under SPA agreement

• Aducanumab has the potential to fundamentally change treatment paradigm of AD by slowing the course of the disease
Phase 1b (PRIME) study design

Population
- Prodromal or mild AD
- MMSE ≥20
- Stable concomitant medications
- Positive amyloid PET scan

Dose Escalation Design
- 1 & 3 mg/kg: placebo (Arms 1-3)
- 10 mg/kg: placebo (Arms 4-5)
- 6 mg/kg: placebo (Arms 6-7)
- Titration: placebo (Arms 8-9)

Endpoints

Primary
- Safety and tolerability

Secondary
- Serum PK
- Anti-aducanumab antibodies
- Amyloid PET, change from baseline to Week 26

Exploratory
- CDR-SB, MMSE
- Amyloid PET, change from baseline to Week 54

Exploratory – Ongoing
- NTB, FCSRT, NPI-Q
- Fluid biomarkers
- Volumetric MRI
- FDG-PET
- tf-fMRI
- ASL-MRI

Prodromal AD: MMSE 24-30; spontaneous memory complaint; total free recall score ≤27 on FCSRT; CDR Global Score 0.5; absence of significant levels of impairment in other cognitive domains; essentially preserved activities of daily living and absence of dementia

Mild AD: MMSE 20-26; CDR Global Score 0.5 or 1.0; meeting NIA-AA core clinical criteria for probable AD
Phase 1b interim results: Biological and clinical effects with acceptable safety

Amyloid plaque reduction with aducanumab (secondary endpoint)

Clinical effect of aducanumab (exploratory endpoints)

Correlation between changes in PET SUVR and CDR-sb and MMSE in aducanumab-treated patients

Change in SUVR vs Change in Spearman correlation P-value
| Change from baseline CDR-sb | CDR-sb | -0.27 | <0.05 |
| Change from baseline MMSE | MMSE | -0.38 | <0.001 |

PET Reduction Relative to SD of Week 54 Placebo Change

- > 1 SD
- ≤ 1 SD

Change from baseline CDR-sb | Change from baseline MMSE

Mean change (±SE) in CDR-sb

Mean change (±SE) in MMSE
Phase 1b interim safety: ARIA is the main finding

- Imaging abnormality

- Dose and ApoE ε4 carriage dependent

- Majority of events are asymptomatic. Symptoms, when present
 - Mostly rated as mild to moderate
 - Generally transient and self-resolving
 - Include headache, confusion, visual disturbances

- Monitorable and Manageable
 - 56% of subjects who develop ARIA-E able to resume dosing without ARIA-E recurrence

ARIA: Amyloid–related imaging abnormality
Phase 1b on-going activities

• Titration cohort (Arms 8 and 9; ApoE ε4 carriers only)
 – Test effect of titration in reducing risk of ARIA
 – Report 1-year placebo period results 2H2016

• Long term extension (3 years)
 – Understand long term safety and tolerability of aducanumab
 – Test effect of titration in reducing risk of ARIA
 – Evaluate amyloid plaque reduction
Phase 3 study design
Phase 3 study in early AD trial design

| Studies | Two identical randomized, double-blind, placebo-controlled studies
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• ENGAGE (NCT02477800)</td>
</tr>
<tr>
<td></td>
<td>• EMERGE (NCT02484547)</td>
</tr>
</tbody>
</table>
| Population | Early AD: MCI due to AD + mild AD all with positive amyloid PET
| | • CDR Global Score of 0.5 |
| | • MMSE score 24–30 |
| | • RBANS score ≤85 |
| Doses | Two active doses vs. placebo |
| | Differential dosing based on ApoE ε4 status |
| | • ApoE ε4 carrier: titration to 3 or 6 mg/kg |
| | • ApoE ε4 non-carrier: titration to 6 or 10 mg/kg |
| Duration | 18 months + 24 month long-term extension |
| Primary endpoint | CDR-SB (change from baseline at week 78) |
| Other key endpoints | Secondary: MMSE, ADAS-Cog 13, ADCS-ADL-MCI |
| | Tertiary: amyloid PET (subset) |
| Sample size | ~1350 per study (450/dose level; 1:1:1) across ~150 sites globally |

CDR, Clinical dementia Rating Scale; MMSE, Mini Mental Status Examination; ADAS-Cog 13, Alzheimer's Disease Assessment Scale-Cognitive Subscale (13-Item); ADCS-ADL-MCI, Alzheimer’s Disease Cooperative Study-Activities of Daily Living Inventory (Mild Cognitive Impairment version); MCI, mild cognitive impairment; vMRI, volumetric MRI
Key areas of focus for aducanumab

• Expediting recruitment and retention
• Mitigating ARIA risk
• Exploring additional patient populations
• Developing screening tools and diagnostics for AD
SMA and nusinersen (SMN$_{Rx}$) program update

Wildon R. Farwell, MD, MPH
Senior Medical Director
Nusinersen program overview

• Patients with SMA have urgent, high unmet medical needs
• Two ongoing Phase 3 trials in collaboration with Isis Pharmaceuticals, data expected by early 2017
• Increasingly encouraging data from the Phase 2 open-label studies
• Ongoing regulatory discussions with health authorities across the EU and US
SMA overview

• SMA is the #1 genetic cause of death for infants

• Rare, genetic, progressive disorder that causes muscle degeneration and weakness, often leading to death

• Incidence is estimated at 1 in 6,000-10,000 live births

• Decreased SMN protein production secondary to an SMN1 gene mutation and subsequent dependence on the SMN2 gene(s)
 – SMN protein is required by spinal cord motor neurons

• Primarily diagnosed and managed by Pediatric Neurologists

• No treatments currently available

Lunn M, et al. (2008)
Pictures provided by CureSMA
SMA types characterized by different disease severity

<table>
<thead>
<tr>
<th></th>
<th>Type I</th>
<th>Type II</th>
<th>Type III</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMN2 Copy Number</td>
<td>Primarily 2 copies</td>
<td>Primarily 3 copies</td>
<td>Primarily 3 or 4 copies</td>
</tr>
<tr>
<td>Age of Symptom Onset</td>
<td><6 mos</td>
<td>7-18 mos</td>
<td>>18 mos</td>
</tr>
<tr>
<td>Age at Diagnosis</td>
<td>4-5 mos</td>
<td>17-19 mos</td>
<td>4.5-7 yrs</td>
</tr>
<tr>
<td>Life Expectancy</td>
<td><2 yrs</td>
<td>~70% live to early adulthood</td>
<td>Normal</td>
</tr>
<tr>
<td>Milestones Achieved</td>
<td>Never sits without support</td>
<td>Sits independently, never walks independently</td>
<td>Walks independently but may lose ability over time</td>
</tr>
</tbody>
</table>

Crawford TO, et al. (2012)
Lunn M, et al. (2008)
Nusinersen designed to increase SMN protein in spinal cord motor neurons

Mechanism of Action
Nusinersen modulates splicing of the SMN2 pre-mRNA to increase full length SMN2 mRNA expression

Proof of Biology
Greater amount of full length SMN2 mRNA observed in infants treated in CS3A compared to untreated SMA infants

Semi-Quantitative RT-PCR Analysis of Thoracic Spinal Cord Segment Obtained from Autopsy

Two Phase 3 studies are ongoing

Later-onset

CS1: SAD

CS2: MAD

CS10: CS1 Re-dosing

CS12: CS10 & CS2 Re-dosing

CHERISH: Phase 3
N = ~117
Randomized 2:1; 11 Month FU

SHINE: OLE; N = ~228

Infantile-onset

CS3A: Phase 2; open label; N=20

ENDEAR: Phase 3
N = ~111
Randomized 2:1; 13 Month FU

SHINE: OLE; N = ~228

Other SMA Populations

NURTURE: Phase 2 pre-symptomatic newborns
N = up to 25

EMBRACE: Phase 2 in infants/children
N = ~20

Phase 1 or 2 sponsored by ISIS
Phase 2 sponsored by Biogen
Phase 3 sponsored by ISIS

SAD = single ascending dose; MAD = multiple ascending dose; OLE = open-label extension.
Median event-free ages continues to be encouraging in open-label Phase 2 study

CS3A, Infantile-onset SMA

Cohort 1
(6 mg, 12 mg)

Cohort 2
(12 mg, 12 mg)

19.9 months
April 17, 2015

16.7 months
April 17, 2015

Subject Age (Months)

*SMN2 copy number of 3; **SMN2 copy number not known; all other infants have SMN2 copy number of 2.
Muscle strength and motor function continue to improve in open-label Phase 2 study, as of April 17, 2015

CS3A, Infantile-onset SMA

Strength
Mean change (± SEM) from baseline in CHOP INTEND

Motor Function
Mean change (± SEM) from baseline in Motor Milestones

Patients typically decline 1.27 pts/yr of follow-up (Finkel R, et al, 2014)

Patients typically do not gain multiple new motor milestones after symptom onset.
We are moving quickly

• Patients with SMA have urgent, high unmet medical needs

• Our top priority is to focus on the controlled Phase 3 trials to demonstrate Nusinersen is safe and effective

• We continue to engage in regular and productive discussions with health authorities in the US and across the EU to understand the most expeditious path forward for Nusinersen

Pictures provided by CureSMA
References

6. Pictures provided by CureSMA
MT-1303 for autoimmune diseases

Jeff Bornstein, MD
Senior Medical Director
MT-1303: Biogen – MTPC agreement overview

• MT-1303 is a phase 3 ready sphingosine 1-phosphate 1 (S1P1)-specific functional antagonist
• Agreement to license worldwide rights (excluding Asia) to MT-1303
• Differentiated asset for indications in ulcerative colitis (UC), Crohn’s Disease (CD), and possibly multiple sclerosis (MS)
 – Low first dose HR effect without need for titration
• Transaction with Mitsubishi Tanabe closed on October 30, 2015
Large unmet need in inflammatory bowel disease (IBD)

- UC and CD are serious conditions associated with substantial health burden
 - Abdominal pain, diarrhea, rectal bleeding, weight loss, need for hospitalization
- Current treatments include anti-inflammatories (5-ASA, corticosteroids), immunosuppressants and biologics

Unmet need
- Option for patients who are intolerant to or refractory to anti-TNF therapy
 - Onset of IBD is in teens and 20s
 - Anti-TNF remission rates after 1 year of therapy ~20%
 - Vedolizumab (SC) addresses a small % of anti-TNF inadequate responders
- Safe, oral therapy for long term maintenance of remission
 - Injectable biologic therapies (anti-TNFs, anti-integrins) and emerging oral agent (Tofa) associated with opportunistic infection and malignancy concerns

Opportunity
- Moderate-to-severe segment estimated to be:
 - UC: ~300K US/ 230K EU\(^1\)
 - CD: ~370K US/ 240K EU\(^1\)

\(^1\) Decision Resources, 2015 and Biogen market research

Inflammatory Bowel Disease (IBD)

<table>
<thead>
<tr>
<th>Crohn’s Disease</th>
<th>Ulcerative Colitis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inflammation of the GI Tract</td>
<td>Inflammation of the colon</td>
</tr>
<tr>
<td>Transmural inflammation</td>
<td>Inflammation limited to mucosa</td>
</tr>
<tr>
<td>Patchy distribution</td>
<td>Continuous distribution</td>
</tr>
<tr>
<td>Can occur anywhere from mouth to anus</td>
<td>Limited to colon and rectum</td>
</tr>
<tr>
<td>Typically spares the rectum</td>
<td>Rectum always involved</td>
</tr>
<tr>
<td>Complications include strictures, fistulae and abscesses</td>
<td>Significantly increases the risk of colon cancer</td>
</tr>
</tbody>
</table>
MT-1303: A functional antagonist of the S1P1 receptor

• Activated T lymphocytes drive inflammation in IBD. Egress of lymphocytes from lymphoid organs is mediated by sphingosine phosphate binding to S1P1 receptors.
 • MT-1303-p binds the S1P1-R leading to
 – Receptor internalization
 – Reduced lymphocyte egress from secondary lymphoid organs
 – Attenuated lymphocyte-mediated inflammation
 • Therapeutic potential in IBD supported by observations with
 – Ozanimod (S1P1-R)
 – Vedolizumab (α4β7)
 – Natalizumab (α4β1/7)

Chiba. Folia Pharmacol. Jpn 2013 139;265
Rosen, Ann Rev Biochem 2013 82;23.1
Potential best in class molecule

- No CV effects in pre-clinical safety studies
- Improved specificity: no effect on S1P3 receptor
- Less potent activator of GiRK channels
- Lower concentrations in cardiac tissue
- Slower conversion to active metabolite

<table>
<thead>
<tr>
<th></th>
<th>Fingolimod-p*</th>
<th>Ozanimod*</th>
<th>MT-1303-p*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-clinical Safety Findings</td>
<td>HR ↓(monkey, rat) BP ↑ (dog)</td>
<td>Pre-clinical HR and BP effects not reported</td>
<td>No CV changes observed in any species</td>
</tr>
<tr>
<td>Receptor Specificity</td>
<td>S1P1,3,4,5</td>
<td>S1P1,5</td>
<td>S1P1,4,5</td>
</tr>
<tr>
<td>S1P1 EC50 (nM)</td>
<td>0.09</td>
<td>0.16</td>
<td>0.08</td>
</tr>
<tr>
<td>S1P2 EC50 (nM)</td>
<td>>1000</td>
<td>>10,000</td>
<td>> 10,000</td>
</tr>
<tr>
<td>S1P3 EC50 (nM)</td>
<td>5.1</td>
<td>>10,000</td>
<td>>10,000</td>
</tr>
<tr>
<td>GiRK Channel EC50 (nM)</td>
<td>8.5</td>
<td></td>
<td>41.6</td>
</tr>
<tr>
<td>Tmax (human)</td>
<td>8 hrs (0.5 mg)</td>
<td>Multiple active metabolites</td>
<td>12 hrs (0.5 mg)</td>
</tr>
<tr>
<td>Heart:plasma ratio @ Cmax (rats)</td>
<td>↑</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Not comparative head-to-head studies.

MTPC ECTRIMS, 2015
Recepetos, DDW 2012
Fingolimod Clin. Pharm. and Biopharm. Review, FDA
MT-1303 has demonstrated Phase 2 efficacy and lymphocyte reduction in relapsing MS comparable to ozanimod Phase 2 and Gilenya Phase 3

MTPC “MOMENTUM” study
- Randomized, double-blind, placebo-controlled study
- PBO, MT-1303 0.1 mg, 0.2 mg, 0.4 mg N= ~100/arm
- 1° endpoint: Gd+ lesions on MRI 8-24 weeks

<table>
<thead>
<tr>
<th>Assessment</th>
<th>MT-1303*</th>
<th>Ozanimod*</th>
<th>Gilenya*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.1 mg</td>
<td>0.2 mg</td>
<td>0.4 mg</td>
</tr>
<tr>
<td>Reduction in cumulative Gd+ T1 lesions</td>
<td>47%</td>
<td>61%</td>
<td>77%</td>
</tr>
<tr>
<td>Lymphocyte count reduction</td>
<td>40%</td>
<td>59%</td>
<td>68%</td>
</tr>
<tr>
<td>Reduction in ARR</td>
<td>17%</td>
<td>1%</td>
<td>82%</td>
</tr>
</tbody>
</table>

*Not comparative head-to-head studies.

1 Individual relapse rate (total relapses/days of follow-up)

2 Not significant

Kappos et al., ECTRIMS 2015
Kappos et al., NEJM 2010
Receptos ECTRIMS 2014
Phase 2 results demonstrate acceptable safety profile

No dose-dependent trends observed in incidence of TEAEs

<table>
<thead>
<tr>
<th>System Organ Class (SOC)</th>
<th>Placebo</th>
<th>MT-1303 0.1 mg</th>
<th>MT-1303 0.2 mg</th>
<th>MT-1303 0.4 mg</th>
<th>Overall N=415</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N=103 n (%)</td>
<td>N=105 n (%)</td>
<td>N=103 n (%)</td>
<td>N=104 n (%)</td>
<td>n (%)</td>
</tr>
<tr>
<td>Subjects with ≥1 TEAEs</td>
<td>66 (64.1)</td>
<td>59 (56.2)</td>
<td>69 (67.0)</td>
<td>58 (55.8)</td>
<td>252 (60.7)</td>
</tr>
<tr>
<td>Total Number of TEAEs</td>
<td>194</td>
<td>223</td>
<td>204</td>
<td>229</td>
<td>850</td>
</tr>
</tbody>
</table>

TEAE with Incidence of > 5%

<table>
<thead>
<tr>
<th>Category</th>
<th>Placebo</th>
<th>MT-1303 0.1 mg</th>
<th>MT-1303 0.2 mg</th>
<th>MT-1303 0.4 mg</th>
<th>Overall</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infections and Infestations</td>
<td>26 (25.2)</td>
<td>28 (26.7)</td>
<td>33 (32.0)</td>
<td>28 (26.9)</td>
<td>115 (27.7)</td>
</tr>
<tr>
<td>Nervous System Disorders</td>
<td>22 (21.4)</td>
<td>23 (21.9)</td>
<td>17 (16.5)</td>
<td>20 (19.2)</td>
<td>82 (19.8)</td>
</tr>
<tr>
<td>Investigations</td>
<td>10 (9.7)</td>
<td>8 (7.6)</td>
<td>14 (13.6)</td>
<td>15 (14.4)</td>
<td>47 (11.3)</td>
</tr>
<tr>
<td>Gastrointestinal Disorders</td>
<td>12 (11.7)</td>
<td>14 (13.3)</td>
<td>5 (4.9)</td>
<td>12 (11.5)</td>
<td>43 (10.4)</td>
</tr>
<tr>
<td>Musculoskeletal and Connective Tissue Disorders</td>
<td>11 (10.7)</td>
<td>8 (7.6)</td>
<td>9 (8.7)</td>
<td>9 (8.7)</td>
<td>37 (8.9)</td>
</tr>
<tr>
<td>General Disorders and Administration Site Conditions</td>
<td>4 (3.9)</td>
<td>13 (12.4)</td>
<td>14 (13.6)</td>
<td>6 (5.8)</td>
<td>37 (8.9)</td>
</tr>
<tr>
<td>Cardiac Disorders</td>
<td>4 (3.9)</td>
<td>8 (7.6)</td>
<td>6 (5.8)</td>
<td>5 (4.8)</td>
<td>23 (5.5)</td>
</tr>
<tr>
<td>Skin and Subcutaneous Tissue Disorders</td>
<td>3 (2.9)</td>
<td>6 (5.7)</td>
<td>7 (6.8)</td>
<td>7 (6.7)</td>
<td>23 (5.5)</td>
</tr>
<tr>
<td>Psychiatric Disorders</td>
<td>4 (3.9)</td>
<td>5 (4.8)</td>
<td>10 (9.7)</td>
<td>2 (1.9)</td>
<td>21 (5.1)</td>
</tr>
</tbody>
</table>

Treatment Emergent Adverse Events (TEAEs) are coded using the MedDRA coding dictionary, Version 17.0.
MT-1303 E04 phase 2 Study in RRMS: Heart rate findings and monitoring outcomes

Without titration, MT-1303 showed
- No heart rate effect on 12-lead ECG post first dose
- Outcomes of monitoring with MT-1303 no different from PBO
- Differentiated from dose-related findings reported with fingolimod

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Subjects Discharged from Clinic at 6 hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Placebo N=103</td>
</tr>
<tr>
<td>MT-1303 (MOMENTUM)</td>
<td>92 (89.3%)</td>
</tr>
<tr>
<td>Fingolimod (Phase 3)</td>
<td>Placebo N=773</td>
</tr>
<tr>
<td></td>
<td>703 (90.9%)</td>
</tr>
</tbody>
</table>

Day 1

Mean HR

Next steps in ulcerative colitis and Crohn’s disease

• Anticipate two Phase 3 studies for each indication:
 – Placebo-controlled 10 week induction study, 1° endpoint = proportion with clinical response
 – Placebo-controlled maintenance study, 1° endpoint = proportion with clinical remission at 52 weeks

• Patients with moderate-severe disease with inadequate response to conventional therapy (including anti-TNFs, immunomodulators and corticosteroids)

• FPI anticipated in H2 2016
Biogen 2015 R&D Day

Q&A
Track 1

BIIB054 for Parkinson’s disease

Amyotrophic lateral sclerosis development

Gene therapy & gene editing
BIIB054 for Parkinson’s disease (PD)

Jesse Cedarbaum, MD
VP Clinical Development
Parkinson’s disease is the second most common neurodegenerative disease

- Cardinal Symptoms: resting tremor, muscular rigidity, bradykinesia, and postural instability
- Motor symptoms are due to loss of dopamine neurons in the brain
- Non-motor manifestations (low blood pressure, constipation, incontinence), sensory problems, sleep disorders and neuropsychiatric problems and dementia. Largely non-dopaminergic in origin.
- Significant caregiver burden
- Average age at onset is in the late 50s to early 60s
- ~1 Million patients in US, perhaps 7 million worldwide

Sources: Lees A, Neurology in Practice 2010, 240-246; Wirdefeldt K et al, Eur J Epidemiol 2011, S1-S58; Decision Resources 2013

“Involuntary tremulous motion, with lessened muscular power, in parts not in action and even when supported; with a propensity to bend the trunk forwards, and to pass from a walking to a running pace: the senses and intellects being uninjured.”
Progressive clinical evolution in PD: motor, cognitive and behavioral impairment

<table>
<thead>
<tr>
<th>Hoehn & Yahr Stage</th>
<th>Pre-Motor</th>
<th>Early PD</th>
<th>Moderate-Advanced PD</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Unilateral involvement, mask-like face</td>
<td>Bilateral involvement, slow shuffling gait</td>
<td>Pronounced gait and posture disturbance, falls</td>
</tr>
<tr>
<td></td>
<td>Resting tremor</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Difficulty with simple manual tasks</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Ranging from minimal disability to generalized, moderately severe dysfunction</td>
<td>Significant slowing of movement</td>
<td>Levodopa is initiated</td>
</tr>
<tr>
<td></td>
<td>• Symptoms inconvenient but not disabling</td>
<td>• Impairment of equilibrium develops</td>
<td>• Motor related (levodopa related) complications develop with prolonged use of levodopa</td>
</tr>
<tr>
<td></td>
<td>• Often tolerable without treatment or respond well to early lines of treatment (one medicine)</td>
<td>• Levodopa is initiated</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Levodopa naïve; Treatment Begins</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **May begin 10-15 years prior to diagnosis**
- **Symptoms non-specific and do not resemble classical PD symptoms**
 - Hyposmia
 - REM Sleep Disturbance
 - Autonomic Dysfunction
 - Constipation/GI Sx
 - Urinary symptoms
 - Loss of R-wave variability
- **Motor signs subtle or absent**

- **Pre-Motor**
- **Early PD**
- **Moderate-Advanced PD**
- **Limited ambulation with assistance disturbance, falls**
- **Bed or chair confinement**
- **Age**
- **Progressive clinical evolution in PD:** motor, cognitive and behavioral impairment
- **Motor related (levodopa related) complications develop with prolonged use of levodopa**
Parkinson’s disease attacks multiple neuronal systems in the brain

Dopamine

Norepinephrine

Acetylcholine
α-Synuclein as a therapeutic target

Motor symptoms due to degeneration of dopamine-containing neurons in the Substantia Nigra

• Degenerating dopamine neurons contain Lewy body inclusions

α-Synuclein (α-syn) is major component of Lewy bodies and Lewy neurites

• Role in synaptic function in the brain
• Mutations associated with familial forms of PD
• Gene duplication / triplication sufficient to cause PD
• Overexpression in cell culture and mice mimics important aspects of pathology
• Injection of α-syn aggregates into animal brains causes pathological changes resembling PD

Loss of dopamine-containing neurons in Substantia Nigra

Lewy Body in Substantia Nigra of a PD patient
Braak staging of the spread of synuclein pathology in the PD CNS

Pre Sx	Early Honeymoon	Mid Stage	Late Stage/Dementia/Psychosis
1 | 2 | 3 | 4 | 5

Hoehn & Yahr Stage

BIIB 054: Targeting α-synuclein pathology in PD

Goal: Target and seek to reduce the build up of α-synuclein and prevent its spread in the brain

BIIB054
- Fully human monoclonal antibody
- Developed by Neurimmune (same platform that generated aducanumab)
- Activity demonstrated in multiple preclinical models
- Primary effect is to block cell-cell transmission of α-Syn seeds
- **Currently in Phase 1 study in Healthy Volunteer Subjects**

Modified after Irwin DJ, et al. Nat Rev Neuro. 2013
BIIB054 is a fully human antibody derived from Neurimmune’s Reverse Translational Medicine (RTM) technology platform.

Neurimmune Antibodies in BIIB pipeline:
- Aducanumab (Aβ): Phase III in 2015
- BIIB054: Phase I in 2015
- Tau: Research
Anti-synuclein antibody attenuates spread of α-synuclein pathology *in vitro* neurons and mouse models

BIIB054 reduces spreading of α-synuclein in cultured neurons (microfluidic system)

<table>
<thead>
<tr>
<th>Chamber 2</th>
<th>Chamber 1</th>
<th>Neurons expressing human α-syn</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIIB054</td>
<td></td>
<td></td>
</tr>
<tr>
<td>control</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BIIB054 reduces spreading of α-synuclein in preformed fibril inoculation mouse model

Preformed α-synuclein fibrils

BIIB054 analog weekly intraperitoneal

Biogen data on file
AD and PD: Similarities and differences

<table>
<thead>
<tr>
<th>Pathological</th>
<th>AD</th>
<th>PD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aggregating Proteins</td>
<td>Ab, Tau >> Synuclein</td>
<td>Synuclein>> Abeta & Tau</td>
</tr>
<tr>
<td>Brain Pathology</td>
<td>Cortical > Subcortical</td>
<td>Subcortical > Cortical</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Clinical</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Symptomatic Rx</td>
<td>Modest</td>
<td>Effective early => complications, loss of effectiveness</td>
</tr>
<tr>
<td>Prodromal Syndrome</td>
<td>Well-characterized; early manifestations similar to later disease</td>
<td>Poorly characterized; non-specific symptoms</td>
</tr>
<tr>
<td>Imaging Biomarkers</td>
<td>Amyloid & Tau PET</td>
<td>No αSyn PET yet; rely on indirect measures</td>
</tr>
</tbody>
</table>
PD brain imaging: Potential biomarkers for trials

<table>
<thead>
<tr>
<th>Modality</th>
<th>Visualizes</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dopamine Transporter SPECT (DatScan)</td>
<td>Nerve terminals of dopamine neurons in basal ganglia</td>
<td>![Dopamine Transporter SPECT (DatScan)]</td>
</tr>
<tr>
<td>Neuromelanin MRI imaging</td>
<td>Brain volumes occupied by cell bodies of dopaminergic and noradrenergic neurons that degenerate in PD</td>
<td></td>
</tr>
<tr>
<td>PD-related Brain Metabolic Patterns using FDG</td>
<td>Pattern of brain metabolism related to loss of function and cognition in PD</td>
<td></td>
</tr>
</tbody>
</table>
Summary and next steps

- PD constitutes an exciting new therapeutic area for Biogen
- BIIB 054 (Anti-Synuclein Antibody) in Phase 1 trials
 - SAD in healthy volunteers underway
 - Next study in patients projected for 2016
- Disease biology is increasingly understood – active discovery research ongoing
Amyotrophic lateral sclerosis (ALS) development

Donald R. Johns, MD
VP Clinical Development
Biogen is uniquely positioned to discover and develop treatments for ALS

- **Clinical know-how**
 - Human genetic advances
 - Rich supply of targets
 - Multiple ALS models

- **Motivation**
 - EMPOWER study
 - Develop novel end-points

- **Emerging science**
 - Profound unmet medical need

Cudkowicz et al., 2013
ALS: Profound unmet medical need

- **Fatal:** death typically within 2-5 years
 - Similar to deadly forms of cancer (ovarian, lung)
- **Progressive muscle weakness:** leads to respiratory failure & death
- **Orphan disease:** 12k-30k U.S. patients (~350K worldwide)
 - 1/400 people will be diagnosed with ALS over course of a lifetime
 - Incidence ~40% of Multiple Sclerosis
- **One FDA-approved medicine:** (Riluzole®)
 - Only extends life by 2-3 months
- >50 failed ALS randomized controlled clinical trials¹

Biogen is advancing ALS drug development

Reasons for prior study failures
- Target unknown or not validated
- Heterogeneous patient population
- Lack of mechanistic biomarkers
- Underpowered Phase 2 studies
- Insensitive measures (ALS-Functional Rating Scale & death)

Biogen’s approach
- Pursuing validated, genetically identified targets
- Data mining dexpramipexole Phase III Study (n=943) to identify improved endpoints
- Biogen methodology study to validate novel endpoints
ALS genetics guides target selection and clinical study populations

Genetics of ALS

- **Apparently Sporadic ALS**
 - 90-95%

- **Familial ALS**
 - 5-10%

 - Unknown
 - C9orf72
 - SOD1
 - TDP-43
 - FUS

 - SOD1

New ALS Gene

Whole exome sequencing (Biogen ALS Sequencing Consortium) identifies new ALS gene:

TBK1 (TANK binding kinase 1)

Autophagy

- ALS genetics is rapidly advancing
- Superoxide dismutase (SOD1) and C9orf72 = most common causes of familial ALS

1 Turner et al., 2013.
3 Stork et al., 2012.
SOD1: Rational first therapeutic target for ALS

• **Validated Target:** SOD1 = 1st identified human genetic cause of ALS\(^1\)

• **Robust preclinical data** with SOD1 Antisense Oligonucleotides\(^2\)
 – ASOs target SOD1 protein by binding and destroying SOD1 mRNA\(^3\)

• **Homogeneous population:** all with genetically confirmed SOD1 ALS

• **Mechanistic Biomarker:** ↓ SOD1 levels in cerebrospinal fluid allow rapid determination of Proof-of-Biology

• **Phase 1 expected to start in 2016**

2. ASOs.
4. BiIB data
Need better endpoints for ALS clinical trials

• Sensitive & specific to track disease progression
 – Detect changes in shorter time period (< 6-12 months)
 – Require fewer patients (n = < 100/arm)
 – Clinically meaningful
 – Predictive of FDA accepted endpoints (ALSFRS, survival)

• Robust operational characteristics
 – Objective, standardized, feasible
 – Reliable & reproducible
Biogen methodology study: identify sensitive measures of disease progression

Longitudinal head-to-head comparison of measures for future proof-of-concept (POC) studies:

- Strength (Hand Held Dynamometry)
- Electrophysiology (EIM)
- Spinal cord imaging (MRI, DTI)

MRI = Magnetic Resonance Imaging, DTI = Diffusion Tensor Imaging, CST = Corticospinal Tract
HHD= Hand Held Dynamometry
EIM= Electrical Impedence Myography

Cohen-Adad et al., 2012
ALS Clinical Trials, Then and Now

<table>
<thead>
<tr>
<th>Assumption(s)</th>
<th>Previous Clinical Trials</th>
<th>Improved PoC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population</td>
<td>Sporadic ALS Patients</td>
<td>Familial & Sporadic ALS Patients (select subpopulations)</td>
</tr>
<tr>
<td>Sample Size</td>
<td>*Fully powered N=440 (n=220/arm)</td>
<td>n=160 (n=80/arm)</td>
</tr>
<tr>
<td>Outcome measure</td>
<td>ALSFRS-R Survival</td>
<td>Novel measure</td>
</tr>
<tr>
<td>Treatment Period</td>
<td>12 months</td>
<td>6 months</td>
</tr>
<tr>
<td>Biomarker</td>
<td>Rarely done</td>
<td>Target engagement required for dose selection</td>
</tr>
<tr>
<td>Cost</td>
<td>5X</td>
<td>1X</td>
</tr>
<tr>
<td>Note</td>
<td>*Phase II Trials ~always underpowered (required size/cost)</td>
<td>Positive Proof-of-Biology Required to trigger Phase III</td>
</tr>
</tbody>
</table>

*Clinical trials in amyotrophic lateral sclerosis: why so many negative trials and how can trials be improved? Mitsumoto H¹, Brooks BR², Silani V³. Lancet Neurology 2014
Biogen’s integrated approach to ALS

• Aided by genetics, redefine ALS in *actionable molecular pathophysiologic terms*
 – Validated targets, in causal biological pathways
 – New therapeutic approaches to accelerate path: gene → drug (e.g. ASO)

• Integrated research-development efforts focus on efficient early phase ALS trials: Gateway to Phase III
 – Validated targets and target engagement biomarkers
 – Defined ALS sub-population
 – Study population stratified by key parameters
 – Data mining of EMPOWER Phase III study
 – Robust, sensitive measures of disease progression: sensitivity > specificity

• SOD-1 ALS ASO Phase 1 clinical study to commence Q1 2016
Gene therapy & gene editing

Olivier Danos, PhD
SVP Cell & Gene Therapy
Gene transfer and gene editing expand Biogen’s capabilities

- **Novel therapeutic modality**
- **Gene therapy is about reprogramming cells.**
 It provides unique opportunities of curing or modifying the course of diseases in patients with high unmet needs.
Therapeutic reprogramming

- Antisense
- Sequence-specific Nuclease
- Sequence-specific Transcription Factor
- Sequence-specific Chromatin Modifier
- Gene replacement
- Gene repair
- Gene knock-out
- Gene augmentation
- Gene silencing
Biogen utilizing both *in vivo* and *ex vivo* approaches

Direct Delivery
- **Therapeutic gene**
 - The therapeutic gene is packaged into a delivery vehicle such as a retrovirus
 - ...and injected into the patient
 - Target organ (e.g., liver)

Cell-based Delivery
- **Therapeutic gene**
 - The therapeutic gene is packaged into a delivery vehicle such as a retrovirus and introduced into the cells.
 - The genetically modified cells are reintroduced into the patient.
 - Adult stem cells
 - Adult stem cells are isolated and propagated in the laboratory.

Related Diseases
- Beta-thalassemia
- Sickle cell disease
- Ocular diseases (XLRS / XLRP)
- Hemophilia A & B

Biogen is well positioned to address the key challenges in gene therapy

<table>
<thead>
<tr>
<th>Gene transfer and gene editing technology improvements:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Specificity and off targets effects</td>
</tr>
<tr>
<td>• Immune responses</td>
</tr>
<tr>
<td>• Control of therapeutic sequences activity levels</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Product development:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Clinical gene therapy is still an unchartered territory</td>
</tr>
<tr>
<td>• Poorly defined pharmacology</td>
</tr>
<tr>
<td>• Commercial scale manufacturing</td>
</tr>
<tr>
<td>• Commercialization of one-off transformative treatments</td>
</tr>
</tbody>
</table>

- State of the art research and technology platforms
- Culture of breakthrough clinical research and product development using new therapeutic modalities
Gene Therapy for Inherited Retinal Degenerations: X-linked retinoschisis and X-linked retinitis pigmentosa

<table>
<thead>
<tr>
<th>Indication</th>
<th>Description</th>
<th>Symptoms</th>
<th>Gene Therapy approach</th>
<th>Development stage</th>
</tr>
</thead>
<tbody>
<tr>
<td>XLRS</td>
<td>Deficiency in RS1, a protein that connects the retinal cell layers 19,000 US patients</td>
<td>Bilateral reduction in visual acuity and peripheral vision. Non-progressive</td>
<td>Intravitreal injection of AVV</td>
<td>Phase I/II FPI June 2015</td>
</tr>
<tr>
<td>XLRP</td>
<td>Deficiency in RPGR, a protein essential to photoreceptor function 12,000 US patients</td>
<td>Night blindness, constriction of peripheral visual fields, and loss of central vision. Progressive</td>
<td>Subretinal injection of AAV</td>
<td>Pre-IND</td>
</tr>
</tbody>
</table>

From Dalkara and Sahel AAV

![Gene therapy in RS1 KO Mouse](image)
Gene therapy for hemoglobinopathies

<table>
<thead>
<tr>
<th>Indication</th>
<th>Description</th>
<th>Symptoms</th>
<th>Gene Therapy approach</th>
<th>Development stage</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1,300 US patients (190,000 WW)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

![Diagram of Hemoglobin Molecule and Gene Editing Process]

- **CD34+ cells**
- **Zinc Finger Nuclease**
- **Disrupt BCL11A (Gene Editing)**
Gene therapy for hemophilia A&B

<table>
<thead>
<tr>
<th>Indication</th>
<th>Description</th>
<th>Symptoms</th>
<th>Gene Therapy approach</th>
<th>Development stage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hemophilia A and B</td>
<td>Bleeding disorders resulting from deficiencies in coagulation Factor VIII or IX. 16,000/4,000 US patients</td>
<td>Recurrent bleeding episodes.</td>
<td>Lentivirus-mediated production of coagulation factors in the liver.</td>
<td>Research / pre IND</td>
</tr>
</tbody>
</table>

Lentiviral vectors for the treatment of Hemophilia

- No preexisting immunity to the vector
- Integrating virus - no loss of treated cells in pediatric patients
- Favorable genotoxicity profile

![Graph showing Plasma FIX Activity and WBCT](image)

- S22: i.v. 5e9 TU/kg
- O59: p.v. 1e9 TU/kg

Note: WBCT: whole blood clotting time
Solving technology challenges to develop commercial products and broaden the scope of applications
Multiple future applications in neurology

<table>
<thead>
<tr>
<th>Disease</th>
<th>Rx Gene</th>
<th>Target Tissue</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spinal Muscular Atrophy</td>
<td>SMN2</td>
<td>Motor neurons, Skeletal muscle</td>
</tr>
<tr>
<td>Adrenomyeloneuropathy</td>
<td>ABCD1</td>
<td>Motor neurons</td>
</tr>
<tr>
<td>Duchenne Muscular Dystrophy</td>
<td>DMD</td>
<td>Skeletal & cardiac muscles</td>
</tr>
<tr>
<td>Friedreich Ataxia</td>
<td>FXN</td>
<td>Dorsal Root Ganglia, Cardiac muscle</td>
</tr>
<tr>
<td>Amyotrophic Lateral Sclerosis</td>
<td>SOD1</td>
<td>Motor neurons</td>
</tr>
<tr>
<td>Progressive Multiple Sclerosis</td>
<td>LINGO</td>
<td>All CNS</td>
</tr>
<tr>
<td>Parkinson Disease</td>
<td>GBA, MAPT, SNCA</td>
<td>Substantia Nigra / Striatum</td>
</tr>
</tbody>
</table>
Summary

• Biogen develops gene transfer and gene editing as new therapeutic modalities for patients with high unmet medical needs.

• We currently focus on developing products for selected applications that are tractable with the current technology.

• A strong emphasis is placed on improving technologies.

• With improved tools and acquired expertise in clinical development we will be uniquely positioned to extend the use of gene transfer and gene editing to diseases that affect large populations.
Track 2

The future of SMARTER drug development with biomarkers

Value based medicine
The future of SMARTER drug development with biomarkers

Richard Hargreaves, PhD
VP Neuropharmacology and Biomarkers

Ajay Verma, MD, PhD
VP Experimental Medicine
Today’s healthcare needs are challenging
Aging disorders and neurodegenerative disease

- Epidemics in chronic neurological illnesses
- Need to evaluate novel disease modifying mechanisms
- Outcome studies are long and expensive
- Need to identify “winners and losers” early to focus research investments
- Rigorous use of biomarkers for early decision making reduces risk and the penalty for innovation
Biogen is investing in novel biomarkers

- Innovation is inversely proportional to validation
- Novel targets rarely have qualified biomarkers
- Need to invest off critical development path
 - Have to be ready for initial clinical trials to make impact
 - Develop biomarkers in advance of drug candidates
 - Requires early investment in novel tools and technologies
Working “smarter” at Biogen

- Paradigm shift: obligatory use of biomarkers:
 - Pathway: proof of biology
 - Disease: patient selection and disease progression
 - Safety

Goal: Test mechanisms not molecules

Biomarkers enable early proof of biology

Did the drug engage the target?

Have we selected the right dose?

Did the drug impact biology?
Biomarkers support drug development

Is the drug being tested in the right subset of patients?

Are measured biomarkers reflective of disease mechanism?

Can biomarkers provide support for efficacy?

Genotype

<table>
<thead>
<tr>
<th>A</th>
<th>G</th>
<th>G</th>
<th>T</th>
<th>G</th>
<th>A</th>
<th>C</th>
</tr>
</thead>
</table>

APOE4

Lesion Imaging

Amyloid

MS

Stroke

Tau

CSF

• AB
• Tau
• A-Syn
• SOD1
Imaging is central to neurodegenerative drug development in Biogen

• Multiple advantages of imaging:
 – Bridge post-mortem histopathology to living patients
 – Select patients for trials
 – Enrich for appropriate pathology
 – Assess drug effects – pharmacodynamics
 – Track disease progression
 – Evaluate impact of therapeutic on brain function
A biomarker driven view of neurodegenerative diseases is emerging

Diagnosis driven by constellation of clinical signs and symptoms

Molecular pathology and CSF analytes classify neurodegenerative diseases

Molecular imaging can visualize molecular pathology

β-amyloid tau α-Synuclein TDP-43 SOD1

Biogen.
Neurodegeneration is staged using biomarkers

- Alzheimer’s disease example
 - $A\beta$ amyloid accumulation may precede clinical disease by 10 years
 - Tau-mediated neuronal injury is more proximal to clinical symptoms

Aducanumab – Clinical proof of concept

[¹⁸F] Florbetapir (Amyvid™) positron emission tomography (PET) scans at baseline (left) and week 54 (right) showing reduction in amyloid plaques in a patient with mild AD.
Novel imaging of tau in Alzheimer’s disease

Hypothesized pathophysiology

Protein aggregate lesion

Spreading Pathology

Altered brain circuit function

Autopsy based Braak staging of AD Tau pathology

Towards in vivo staging of tau pathology with 18F-T807 PET

AD patient Tau 18F-T807 PET

AD patient Amyloid 11C-PIB PET

FTD patient Tau 18F-T807 PET

FTD patient Amyloid 11C-PIB PET

Collaboration with Keith Johnson, MGH
Alzheimer’s disease imaging roadmap

Symptoms

[18F]FDG PET Diagnosis
Amyloid

Neuro-Inflammation TSPO
Synaptic markers vGlut1, sv2A

Structure

Disease Modification

Cross validation of neuroimaging with fluid biomarkers

Adapted from Clinical Pharmacology and Therapeutics; 2008 83:349
Parkinson’s disease imaging roadmap

Symptoms

1. **Cross validation of neuroimaging with fluid biomarkers**
2. **α-synuclein pathology**
3. **Objective measures of symptoms**
4. **Efficacy**

- **DAT SPECT Neuro-melanin**
- **18F-FDG PDRP Function**
- **MRI T1W**

Diagnosis

Brain. 2007 130:1834 Mov, Disord. 2015; 30:945
Biogen is deconstructing neurodegeneration using molecular and functional neuroimaging

a. Neurodegeneration hypothesis

- Protein aggregate lesion
- Spreading Pathology
- Altered brain circuit function

b. Imaging proteinopathy lesions in vivo

- Amyloid plaques
 - Negative
 - Positive
- Tau aggregates
 - Negative
 - Positive

c. Imaging brain metabolic health in vivo

- Glucose use (18FDG-PET)
 - Normal
 - Alzheimer’s
- Blood flow (ASL MRI)
 - Normal
 - Alzheimer’s

d. Imaging brain circuit activity in vivo

- RSN
 - Functional connectivity
- fMRI
 - BOLD activation
- phMRI
 - Drug Effect
Biomarker technology innovation

- Increasing access to imaging biomarkers
- Improving early diagnostic accuracy
- Reducing cost
Molecular imaging technologies: PET vs. SPECT

- **PET**
 - Clinical Resolution: ~4 mm (~50 µL)
 - Sensitivity: nM-pM
 - Scanner Install Base (Global): ~7,500
 - FDA Approved Radiopharmaceuticals: <10
 - Radio-pharmacy Requirements: Cyclotron and Synthetic Chemistry
 - General Radioisotope Characteristics: Shorter Half-Lives
 - Typical # Repeat Scans in a Trial: 2-3

- **SPECT**
 - Clinical Resolution: ~8 mm (~500 µL)
 - Sensitivity: µM-nM
 - Scanner Install Base (Global): ~35,000
 - FDA Approved Radiopharmaceuticals: > 50
 - Radio-pharmacy Requirements: Compounding or Centralized
 - General Radioisotope Characteristics: Longer Half-Lives
 - Typical # Repeat Scans in a Trial: 2-5

Map of US Nuclear Pharmacies

- 69 PET Alone
- 333 SPECT Alone
- 42 Both PET & SPECT
Advances in SPECT imaging resolution and sensitivity

Multi-pinhole inserts

Multi-pinhole based high-resolution SPECT/CT functional and anatomical imaging system

Previous Generation Multi-pinhole

Multi-pinhole inserts

Data Acquisition

Projections
Multiple Overlapping Projections on Four Detectors

Image Processing + Data Analysis

Tomographic Reconstruction

Mouse

Squirrel monkey
Hi-Res SPECT scanner project: “BioSPECT”

- Clinical SPECT scanner collaboration between Biogen, Mediso and InviCRO

- World’s highest resolution and sensitivity commercial SPECT-CT system
 - Absolute quantification of radioactivity concentrations
 - Exchangeable imaging aperture systems
 - Specific configurations for dedicated brain regions (cortex, striatum)
New imaging capabilities for drug development

Novel scanner features for brain specific imaging applications

BioSPECT scanner

Triple head model

Brain sub-region specific collimators

Body and head apertures

- **Bone scan**
- **Organ perfusion**
 - Heart
 - Brain
 - Hands

Striatum-specific aperture

- **Striatal phantom**
- **SPECT image**
 - Disease spread
 - Nigrostriatal pathway

Cortex-specific aperture

- **Alzheimer’s phantom**
- **SPECT image**
 - Disease spread
 - β-amyloid
 - Tau
Application of high resolution SPECT imaging to Parkinson’s disease

- Dopamine synapse loss determines Parkinson’s motor symptoms
- BioSPECT improves accuracy and sensitivity of imaging dopamine synaptic terminals with SPECT probe (123I-Ioflupane; DaTScan)
- Enhanced sub-region analysis of dopamine synapse loss could:
 - Enable earlier diagnosis
 - Increase diagnostic specificity
 - Allow faster disease modification hypothesis testing with fewer subjects

Data were acquired from the same scanning session in single patient with early Parkinson’s disease
Application of high resolution SPECT imaging to Alzheimer’s disease

Current Amyloid tracers are sub-optimal for early detection

- PET availability limitations
- White matter background

High-res SPECT facilitates development of biologics imaging agents: potential for new imaging approaches for early disease detection

- Higher specificity of biologics probes (mABs, Ab fragments)
- Longer SPECT isotope half-lives preferable for slow pharmacokinetics (mABs, ASOs)

<table>
<thead>
<tr>
<th>Healthy Subject</th>
<th>Alzheimer’s Disease</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

125I-12F6A (murinized aducanumab)

125I-12F6A Fab2 fragment in TG2576 mice

Patel et al., AD PD, Mar 2013

Courtesy of MNI
Addressing real world biomarker needs: new imaging solutions for growing demand

Map of US nuclear pharmacies

Growing world burden of dementia

~7500 Global PET scanners
~35,000 Global SPECT scanners

Novel solutions needed to meet growing world demand for molecular imaging

- Wider availability
- Cost effective
- Quantitative
- Sensitive
- Specific

* Alzheimer’s Research UK, 2015
Biogen mobile molecular scanner prototype

Functional prototype

Sensitivity map

Head and spine prototype

Wireless data transmission

Detector time activity curve
Biomarker innovations for smarter drug development

Emerging neurodegeneration knowledge

- β-Amyloid
- Tau
- α-Syn
- SOD1
- Spreading proteinopathy
- Protein aggregates
- Inflammation
- Alzheimer's
- Parkinson's
- ALS

Emerging capabilities

- Digital technologies
- Data analytics
- Mobile convenience
- Connected Health

Innovative biomarker technologies

- Lesion and synapse imaging probes
 - Hi-Resolution quantitative clinical SPECT
 - Novel cost-effective imaging solutions

Biogen
Biomarkers and the future of neurology drug development

Growing world burden of Dementia

Novel solutions needed to meet growing world demand for molecular imaging

- Wider availability
- Cost effective
- Quantitative
- Sensitive
- Specific

Biomarkers for the masses

Delivering value with biomarkers

* Alzheimer’s Research UK, 2015
Value based medicine

Richard A. Rudick, MD
VP Development Sciences
Value based medicine

MS PATHS – A solution to outcomes-based reimbursement

Google Life Sciences Partnership – Biologic, genetic, and sensor technology to accelerate disease understanding
Value based medicine

MS PATHS – A solution to outcomes-based reimbursement

Google Life Sciences Partnership – Biologic, genetic, and sensor technology to accelerate disease understanding
Biogen is creating a technology-based solution to future outcomes-based reimbursement models

Pay for products, procedures & services

Pay for outcomes

New tools and methods are needed to measure outcomes in medical practice

Institute of Medicine has called for a learning healthcare system to continuously improve patient outcomes*

MS PATHS aims to enhance the standard of care through a Learning Health System

- Biogen is collaborating with leading healthcare institutions to establish the first Learning Health System for MS
- Leverages new technology to standardize and collect outcomes data for every MS patient at their office visit
- Establishes a new core capability within Biogen that, if successful, can be deployed in other therapeutic areas
Components of the MS PATHS Learning Health System

1. Standardized data collection
 - Clinical data
 - MRI data
 - Biologic data

2. Data aggregation across healthcare institutions
 - Store, analyze, visualize data

3. Insights
 - Research
 - Point of care
Multiple Sclerosis Performance Test (MSPT): An iPad®-based medical device

- Developed by Biogen in collaboration with the Cleveland Clinic
- Includes structured patient history, measures patient experience, and quantifies walking, dexterity, vision, and cognition
- Designed for patient self-administration
- Enables easy visualization of change over time and comparison to other patients

Note: At this time, the MSPT is not a commercially available product and is subject to change.
MS patient conducting her own assessment
MS PATHS Informatics Solution: Designed to collect, de-identify, and aggregate data from a large volume of diverse patients

MS PATHS Center

<table>
<thead>
<tr>
<th>Clinical Activities</th>
<th>Clinical Data Center</th>
</tr>
</thead>
<tbody>
<tr>
<td>Registration & Consent</td>
<td>EMR</td>
</tr>
<tr>
<td>Patient Demographics</td>
<td>RIS</td>
</tr>
<tr>
<td>MRI</td>
<td>PACS</td>
</tr>
<tr>
<td>MSPT</td>
<td></td>
</tr>
</tbody>
</table>

HIE Data Harmonization

Data De-Identification

MS PATHS Broker

Identified Data

De-Identified Data

MS PATHS Cloud

LHS Cloud

Data Storage

LHS = learning health system.

Biogen
MS PATHS: Returning Value to Biogen While Driving Innovation in Healthcare

- Create the first Learning Health System in neurology
- Improve the MS standard of care
- Demonstrate the effectiveness of Biogen MS therapies
- Stem reimbursement pressure
- Establish a new mechanism to accelerate translational research
- Drive toward personalized medicine for MS
Value based medicine

MS PATHS – A solution to outcomes-based reimbursement

Google Life Sciences Partnership – Biologic, genetic, and sensor technology to accelerate disease understanding
Google Life Sciences partnership

Biogen
- Deep scientific and clinical expertise
- Data access
- Clinical study coordination

Google Life Sciences
- Industrialized biological/genetic analysis platform
- Advanced wearable technology
- Big data analytics

SysteMS Study

Brigham and Women’s Hospital’s CLIMB Study
- 2,500 patients
- MRI
- Clinical assessment
- Bio-banked biological samples
Evaluate participant **behavioral** and **environmental** factors using Google Life Science’s advanced wearable sensor technology as they live in their own environment.

In-clinic pilot study
Optimize assessment of mobility, gait, and dexterity with Google’s sensors in the clinic and home environment

At-home pilot study
Compare device data, in clinic and home, with physician-assessed clinically validated measures of MS function

Expansion to full CLIMB population
Combine behavioral, environmental, genetic, biologic, imaging, and neurologic data to better understand MS disease progression
Google Life Sciences Partnership

Future Implications
Biogen 2015 R&D Day
Advancing the Next Wave of Potential Therapies

November 3, 2015
Raxatrigine in neuropathic pain

Simon Tate, PhD
VP Pain Research Therapeutic Area
Pain is a large market with high unmet need and an improved scientific understanding

• Neuropathic Pain affects more than 12 million adults in the US (Decision resources Oct 2014)

• Continued and significant unmet need
 – Limited drug efficacy and substantial side effects
 – Need for innovative therapies with increased efficacy and improved safety/tolerability

• Now delivered successful phase 2 proof of concept studies with \(\text{Na}_{\text{v}}1.7 \) blocker, raxatrigine in neuropathic pain associated with trigeminal neuralgia and sciatica
• Initiating phase 3 in 2016
Targeting sodium channel (Nav) dysfunction in pain

- Voltage-gated sodium channels play a key role in the initiation of action potentials and subsequent propagation of pain signalling.
- Genetics link SCN9A (*Nav*$_{1.7}$ channel) with a variety of painful clinical syndromes, such as *Erythromelalgia* and *Small Fibre Neuropathy*.
Biogen Nav channel pipeline: Targeting convergent points in pain pathway

The FDA has assigned raxatrigine orphan drug status for the treatment of trigeminal neuralgia

- **Pre-Clinical**
 - Raxatrigine (CNV1014802) Na\(_v\)1.7 Blocker
 - Trigeminal Neuralgia, Sciatica & Neuropathic Pain

- **Phase 1**
 - CNV1061436
 - Phase I ready Na\(_v\)1.7 blocker

- **Phase 2**
 - CNV3000223/CNV3000164
 - Na\(_v\)1.7 Candidates
Raxatrigine is a selective Nav1.7 blocker with a differentiated mechanism of action

Orally available, CNS penetrant, Na$_v$1.7 selective blocker

Greater level of block as the pain network becomes more active (use-dependent block)
Tremendous unmet need in trigeminal neuralgia

• Attacks of facial pain (paroxysms) - usually associated with entrapment of the trigeminal nerve with a blood vessel
 – “..sudden, severe, brief, stabbing pain occurring in attacks lasting at the most a few seconds usually only on one side of the face and provoked by light touch”
 – “an electric shock”
 – “stabbing, shooting, burning, excruciating..”
 – “unlike any other pain previously experienced” reference
 (quotes above taken from trigeminal neuralgia association - ‘facing pain together’)

• Paroxysm frequency depends on severity of disease
 – Range: a few times a month to several times each day

• Treatment options are limited: anticonvulsants or surgery

Only one drug licenced for this condition (Carbamazepine)
UK 1965, USA 1974
Successful Phase 2 completed in trigeminal neuralgia*

70.5% (31/44 pts) completing open-label treatment had a significant response

* Presented at World Pain Congress 2014 and American Pain Society 2015.
Favourable efficacy outcomes on all endpoints

• Fewer patients experienced treatment failure (33.3%) versus placebo (64.3%) (p=0.0974)

• Longer time to treatment failure versus placebo (p=0.0306; KM analysis)

• After 4 weeks, pain intensity NRS values were 50% lower versus placebo (p=0.0009)

• Clinicians and patients reported greater improvement rates versus placebo
 – CGIC: improvement rate for raxatrigine was 80% vs 35% for placebo (p=0.0051)
 – PGIC: improvement rate for raxatrigine was 73% vs 50% for placebo (p=0.0265)
Post-hoc analysis reveals clinically significant benefit in average daily pain score

<table>
<thead>
<tr>
<th>Analysis</th>
<th>Placebo (N=14)</th>
<th>Raxatrigine (N=15)</th>
<th>Comparison (Raxatrigine – Placebo) (95% CI)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOCF*</td>
<td>-0.74</td>
<td>-3.05</td>
<td>-2.31 (-3.78, -0.83)</td>
<td>0.0035</td>
</tr>
<tr>
<td>LOCF**</td>
<td>-1.10</td>
<td>-3.59</td>
<td>-2.50 (-4.16, -0.84)</td>
<td>0.0048</td>
</tr>
</tbody>
</table>

* BOCF = Baseline observation carried forward
** LOCF = Last observation carried forward
Phase 3 plans

Objective
To investigate the efficacy of raxatrigine in treating pain experienced by patients with trigeminal neuralgia

Design
12 weeks double blind

First Patient Dosed
Anticipated in 2016
Integrated development plan

Deconstructing pain therapeutic area into populations of pharmacologically and genetically defined patient groups

- 2015
- 2016
- 2017
- 2018
- 2019
- 2020

- Trigeminal Neuralgia (TN) pivotal studies
- Sciatica Phase 2b
- Sciatica pivotal studies

Significant clinical improvement over current standard of care

Precision medicine strategy – exploiting advances in pain genetics

- PoC studies in Nav1.7 Associated Pain Conditions
- Erythromelalgia
- Small Fibre Neuropathy
- Neuropathic pain pivotal studies
Tysabri in stroke

Jake Elkins, MD
Senior Medical Director
TYSABRI for acute ischemic stroke

<table>
<thead>
<tr>
<th>Significant Limitations with Current Tx</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Over 1.7M first-time ischemic strokes occur each year, common cause of death and disability</td>
</tr>
<tr>
<td>• High need for new treatments that can be used alone or as add-on to current therapies over extended time window</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Phase 2 Demonstrated Clinical Benefit</th>
</tr>
</thead>
<tbody>
<tr>
<td>• No effect of TYSABRI on MRI-defined infarct volume</td>
</tr>
<tr>
<td>• TYSABRI resulted in benefit on key clinical measures of stroke recovery and functional independence</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Well-Characterized Safety Profile</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Phase 2 single dose administration - no safety concerns identified</td>
</tr>
</tbody>
</table>

TYSABRI targets key mediators of post-ischemic inflammation and neurotoxicity

1. Shichita et al, Peroxiredoxin family proteins are key initiators of post-ischemic inflammation in the brain, Nature Medicine, 2012.

2. Shichita et al, Pivotal role of IL-17 producing γδ T cells in the delayed phase of ischemic brain injury. Nature Medicine, 2008

After neuronal ischemia, damage-associated molecular patterns activate innate and adaptive immune system.

Acute (days)
Innate arm of the immune system: γδ T cells

Acute infarct volume expansion: Measure with MRI

Subacute (weeks)
Adaptive arm of the immune system: CD4+T-cells, B-cells

Peri-infarct – stroke recovery: Measure with clinical outcomes
ACTION proof-of-concept trial: Single IV 300mg dose of TYSABRI in Acute Ischemic Stroke

- Acute Ischemic Stroke
- 0-9 Hours from onset
- NIH Stroke Scale > 5 points

- Placebo (N=82)
- TYSABRI 300mg IV x 1 dose (N=78)

Baseline
- Infarct Volume
- NIHSS

24±6hrs
- Infarct Volume
- NIHSS

Day 5
- Infarct Volume
- NIHSS; mRS; Barthel Index

Day 30
- Infarct Volume
- NIHSS; mRS; Barthel Index

Day 90 FINAL VISIT
- NIHSS; mRS; Barthel Index;

*Single dose ** Change from baseline
AE=adverse event; AIS=acute ischemic stroke; FLAIR=Fluid attenuated inversion recovery; LKN=last known normal; MRI=magnetic resonance imaging; mRS=modified Rankin scale; NIHSS=National Institute of Health Stroke Scale; SAE=serious adverse event.
Protocol 101SK201.
Clinical endpoints in ACTION

<table>
<thead>
<tr>
<th>Scale</th>
<th>Description</th>
</tr>
</thead>
</table>
| Modified Rankin Scale | • Functional Independence
• 6-point scale ranging from death to no disability |
| Barthel Index | • Activities of Daily Living
• E.g. walking, dressing, eating |
| NIH Stroke Scale | • Focal neurologic exam findings
• E.g. arm / leg weakness, speech impairment |
| Stroke Impact Scale - 16 | • Patient-reported stroke impact
• E.g. difficulty completing daily tasks |
| Montreal Cognitive Assessment | • Cognitive screening test
• Similar to Mini-Mental State Exam (MMSE) used in Alzheimer’s disease |
Well-balanced baseline demographics

<table>
<thead>
<tr>
<th>ACTION: Baseline Characteristics</th>
<th>Placebo N=82</th>
<th>TYSABRI N=77</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, Mean (SD)</td>
<td>71.6 (12)</td>
<td>70.4 (13)</td>
</tr>
<tr>
<td>Gender (male)</td>
<td>59%</td>
<td>51%</td>
</tr>
<tr>
<td>Weight (kg), Mean (SD)</td>
<td>75.6 (16)</td>
<td>77.8 (17)</td>
</tr>
<tr>
<td>Baseline DWI volume in mL, Mean (SD)</td>
<td>40 (39)</td>
<td>42 (46)</td>
</tr>
<tr>
<td>Baseline NIHSS, Mean (SD)</td>
<td>13.2 (5.8)</td>
<td>12.9 (6.0)</td>
</tr>
<tr>
<td>Pre-stroke modified Rankin Scale, Mean (SD)</td>
<td>0.9 (1.45)</td>
<td>0.5 (1.00)</td>
</tr>
<tr>
<td>tPA use</td>
<td>79%</td>
<td>73%</td>
</tr>
<tr>
<td>Time from stroke onset to study drug in hours, Mean (SD)</td>
<td>6.40 (1.7)</td>
<td>6.49 (1.5)</td>
</tr>
</tbody>
</table>
Clinically meaningful benefit of TYSABRI at Days 30 and 90 on clinical and cognitive function, not on MRI volume

<table>
<thead>
<tr>
<th>Clinical Outcome Scale</th>
<th>Odds Ratio for Favorable Outcome at Day 30</th>
<th>Odds Ratio for Favorable Outcome at Day 90</th>
<th>t-PA 3-4.5h Reference OR (95% CI) from ECASS3 Trial at Day 90</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinical Function</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mRS score of 0 or 1</td>
<td>2.88**</td>
<td>1.48^</td>
<td>1.34 (1.02-1.76)</td>
</tr>
<tr>
<td>Barthel Index ≥ 95</td>
<td>1.13</td>
<td>1.91**</td>
<td>1.23 (0.93-1.62)</td>
</tr>
<tr>
<td>Stroke Impact Scale - 16 > median</td>
<td></td>
<td>1.80*</td>
<td>NA</td>
</tr>
<tr>
<td>Montreal Cognitive Assessment ≥ 26</td>
<td></td>
<td>2.03*</td>
<td>NA</td>
</tr>
<tr>
<td>Focal Clinical / MRI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NIHSS score 0 or 1</td>
<td>0.69</td>
<td>1.10</td>
<td>1.33 (1.01-1.75)</td>
</tr>
<tr>
<td>MRI-defined Infarct Volume (1˚EP)</td>
<td>1.09 (Day 5)</td>
<td>1.05 (Day 30)</td>
<td>NA</td>
</tr>
</tbody>
</table>

1-sided P<0.05 ; *1-sided P <0.10; ^1-sided P <0.20
Clinical treatment effect of TYSABRI strongest in moderate size infarcts

<table>
<thead>
<tr>
<th>Clinical Outcome Scale</th>
<th>Odds Ratio for Favorable Outcome at Day 90</th>
<th>Odds Ratio for Favorable Outcome at Day 90</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Infarct volume < median</td>
<td>Infarct volume > median</td>
</tr>
<tr>
<td>Clinical Function</td>
<td></td>
<td></td>
</tr>
<tr>
<td>mRS score of 0 or 1</td>
<td>2.57**</td>
<td>0.52</td>
</tr>
<tr>
<td>Barthel Index ≥ 95</td>
<td>3.22**</td>
<td>1.20</td>
</tr>
<tr>
<td>NIHSS score 0 or 1</td>
<td>0.90</td>
<td>1.36</td>
</tr>
</tbody>
</table>

**1-sided P<0.01
ACTION – Acceptable safety observed

<table>
<thead>
<tr>
<th>Treatment Emergent Adverse Event</th>
<th>Placebo (n=82)</th>
<th>TYSABRI (n=78)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Death</td>
<td>13</td>
<td>14</td>
</tr>
<tr>
<td>Serious Adverse Events</td>
<td>38 (46%)</td>
<td>36 (46%)</td>
</tr>
<tr>
<td>Infections</td>
<td>36 (44%)</td>
<td>36 (46%)</td>
</tr>
<tr>
<td>Depression</td>
<td>15 (18%)</td>
<td>9 (11%)</td>
</tr>
</tbody>
</table>
Conclusions and next steps

• A single-dose of TYSABRI did not reduce infarct volume but meaningfully improved functional outcomes at 90 days

• Pattern of clinical/MRI effects consistent with peri-infarct inflammation impacting functional recovery without focally expanding infarct core

• Overall, clinical profile and treatment window supports potential to complement existing therapies both as stand-alone and add-on therapy to reperfusion treatments

• Plan to confirm clinical effect and perform dose-ranging in Phase 2b trial. FPI anticipated in 2016
Research in Biogen: Why and how

Spyros Artavanis-Tsakonas, PhD
Chief Scientific Officer
Why?

• Research is the innovation engine that drives and sustains our growth over the long term

• Research depends on world class researchers: we have been quite successful in recruiting such people from academia and industry

• We are conscious that we cannot solve everything inside. Quality of internal hires determines the quality of external collaborations

• Our research must be as good as any top level academic institution, perhaps better. Importantly we must link discovery to creative translation
Our target discovery approach

Capitalize on Links within Neurodegeneration

An ALS target may address PD etc!

• Multifaceted approaches:
 • Genetics, cell biological, physiological, molecular biological, biochemical, model system biology, imaging, novel preclinical models

Exploratory freedom tightly integrated with drug development in core areas
Novel disease modifiers in fly and human provide validated therapeutic targets

Post-mortem ALS spinal cord: age 47 to 81

Henderson lab, Columbia; Rabin et al., 2010

40 genes show tight correlation with early-onset ALS: candidate disease modifiers?

75% overlap!!

1 target relevant to both ALS and AD already in drug discovery pipeline

List of genes that slow or prevent ALS phenotype

Laser microdissection and gene profiling

genetic screen

ALS fly eye
Artavanis lab, Biogen

ALS fly eye with suppressor mutation

Biogen
Genetic screens identify a phospholipase (PL) as a modifier of ALS phenotypes

ALS
- Knockdown protects ALS-related NMJ phenotypes
- Knockdown of PL pathway members also protects ALS-related

Drosophila

Mouse
- PL knockout protects a SOD.G93A model (preliminary data)
- PL knockout mice have no deleterious effects

Genetically Engineered Mouse
- High PL levels correlates with earlier onset ALS

Human
- PL ablation confers protection in a transgenic model of AD
- PL upregulation in AD patient-derived brains

Small Molecules
- We have small molecule inhibitors

PL as an exploratory Target!

AD
- PL knockout protects a SOD.G93A model (preliminary data)

Biogen
Exploring the **target** “space”: Proteomics

Proteins do not act alone

Define all protein interactions in a cell: Drosophila and Human

From one **target** to target (**multiple**) alternatives

Defining protein complexes is important both for **function** as well as novel **target** identification

Targets?
Defining the human and the Drosophila proteome

Q4 2015 Completion of both Proteomes
Collaboration with the Gygi and Harper Labs at Harvard

Guruharsha et al., 2011. *Cell*
Hutlin et al. 2015. *Cell*
Cluster 213
protein kinase C inhibitor activity, Ras protein signal transduction

<table>
<thead>
<tr>
<th>Gene Symbol</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>14-3-3epsilon</td>
<td>Ras protein signal transduction ;</td>
</tr>
<tr>
<td>14-3-3zeta</td>
<td>Ras protein signal transduction ;</td>
</tr>
<tr>
<td>CG4080</td>
<td>wing disc development ;</td>
</tr>
<tr>
<td>Sod</td>
<td>removal of superoxide radicals ;</td>
</tr>
<tr>
<td>AnnX</td>
<td>calcium-dependent phospholipid binding ;</td>
</tr>
<tr>
<td>awd</td>
<td>microtubule-based process ;</td>
</tr>
<tr>
<td>Df31</td>
<td>nucleosome assembly ;</td>
</tr>
<tr>
<td>fax</td>
<td>axonogenesis ;</td>
</tr>
<tr>
<td>Dip-B</td>
<td>proteolysis ; aminopeptidase activity</td>
</tr>
<tr>
<td>regucalcin</td>
<td>Intracellular calcium homeostasis</td>
</tr>
</tbody>
</table>
Our future depends on a successful innovation engine which can be efficiently and creatively translated.

An innovation engine uniquely relies on the quality and originality of our research.
The new neurology at Biogen

Chris Henderson, PhD
VP Neurology Research
Exciting times for neurodegenerative disease

1) Broadening AD research: Tau and beyond
2) A concerted assault on familial and sporadic ALS
3) Testing new and better targets in people with AD, PD, ALS and MS
Neurodegenerative diseases have both specific and shared underlying mechanisms: future drugs may target either
AD research strategy: thinking beyond aducanumab

Protein misfolding and aggregation

Aβ Tau

At risk prodromal mild moderate severe
Why tau?

Temporal correlation with cognitive decline

Regional correlation with cognitive deficit

Both AD and tauopathies
Spreading of tau pathology is correlated with progression of symptoms and may self-perpetuate

• Human imaging and postmortem data indicate that Aβ initiates tau spreading
• However, once triggered, tau spreading can self-perpetuate in the absence of Aβ pathology, at least in animal models

Aβ/tau combination therapy may be required to prevent progression in later stages of AD
Tau spreading as a target in AD and other tauopathies

Challenge for all antibody approaches
The toxic and spreading tau species in human patients are unknown: phosphorylated? truncated? oligomeric? disease-specific strain?

Potential solution
Lowering levels of *Tau* messenger RNA should reduce all toxic forms
Tau mAbs block neuron-to-neuron spreading \textit{in vitro} and improve behavior in transgenic mice \textit{in vivo}.

\textbf{In vitro:} Lead mAb blocks tau spreading.

\textbf{In vivo:} Lead mAb improves motor symptoms in P301L mice (reMYND).

\textbf{Graph:}

- \textbf{Bar Graph:} % Control IgG.
 - Ctrl: 100%
 - mAb: 0%

- \textbf{Line Graph:}
 - Avg. Clasping score vs. Age (mo):
 - Bad: 3.0
 - Normal: 0.0
 - Control and other mAbs:
 - mAb:

\textbf{Authors:}
Shuko Takeda, Brad Hyman
AD research strategy: an expanding focus

- Protein misfolding and aggregation
 - A\beta
 - Tau
- Risk factors (e.g. ApoE)
- Biomarker-based outcomes
 - Synapse dysfunction / loss – Neuronal death
 - Glial dysfunction
- Novel targets from exploratory research
- Novel targets from human genetics

At risk, prodromal, mild, moderate, severe
A neurology discovery-to-development engine for multiple diseases and pathways

- AD
- PD
- ALS
- MS

- Remyelination and neuroprotection
- Eye as a window to the brain
- Neuroimmunology
- Epigenetics
- Genetics & systems biology
- Imaging and functional outcomes
- Gene therapy

Biologies and target validation strategies relevant to all diseases
Learning from nature: Using selective resistance to discover targets for sporadic ALS

What makes spinal motor neurons selectively vulnerable?

They are the only motor neurons to express MMP-9

Loss of nerve-muscle synapses in limbs

Onuf’s nucleus (continence) preserved

oculomotor neurons preserved
Reducing MMP-9 delays loss of neuromuscular synapses and enhances muscle strength in ALS model mice

Nerve-muscle synapses last 80 days longer

Muscle strength preserved when MMP-9 levels low

- Reducing MMP-9 may be therapeutic for patients with both familial and sporadic ALS
- Tens of other targets have strong rationale in ALS and other diseases but have not been validated

Kaplan et al., 2014
Accelerating target validation in patients with neurodegenerative diseases

Filters:
- Human genetics and expression
- High-throughput evaluation in animal models
- Sensitive human proof-of-concept trials
 see Johns (ALS)

Clinical development programs

Validate candidate targets

Biomarkers

Models

Potential targets

- Human/fly genetics
- Neuronal/glial biology
- Disease modifiers
- Phenotypic screens
Exciting times for neurodegenerative disease

1) Broadening AD research: Tau and beyond
2) A concerted assault on familial and sporadic ALS
3) Testing new and better targets in people with AD, PD, ALS and MS
Vision for neuroimmunology in neurodegeneration

Richard M. Ransohoff, MD
Senior Research Fellow & VP Neuroimmunology

Pagani Front Cell Neurosci 2015
Four takeaway points

• Neuroinflammation is integral to neurodegeneration.
• At Biogen Neuroimmunology Research, we study how the brain’s local environment regulates neuron failure or death in neurodegenerative disease.
• This research is carried out by a deep, talented team, tightly integrated with Biogen Neurology and Pathway Research.
• Identifying neuroimmunological molecular mechanisms enables us to attack neurodegeneration on multiple fronts.
Neuroimmunology research affects all therapeutic areas

Richard M. Ransohoff and team

Focus for today: Microglia, BBB

Attenuate MS tissue injury, promote BIIB37 BBB transit

Promote axon repair and NMJ reinnervation

Lessen striatal motor neuron loss by modulating microenvironment, promote BIIB054 BBB transit

Reduce synapse loss, foster synapse formation, neurogenesis. Enhance Aβ clearance and interdict tau pathology; address ARIA
Tau and Amyloid Pathologies: Synchronous with the Neuroinflammatory Reaction
Who is Biogen Neuroimmunology?

Bench scientists and scientist-managers

Largest single site group in the U.S.

Uniformly talented; deep, diverse, experienced
Why Neuroimmunology?

• CNS neurodegenerative diseases selectively degrade and destroy neurons and oligodendrocytes. Pathogenesis is not cell autonomous.

 – CNS local environment includes reactive cells (microglia and others) and the BBB which determine outcomes of disease process

 – The systemic environment (infection, chronic inflammation, metabolic state, microbiome) also contributes to disease or health
Why Microglia?

• Most reactive cells in CNS
 – Myeloid origin endows them with toxic effector functions
 – Myeloid origin endows them with repair capacity.
Why Microglia?
Why Microglia?

• Most reactive cells in CNS
 – Myeloid origin endows them with toxic effector functions
 – Myeloid origin endows them with repair capacity.
 – Loss of essential function in reactive state mandates urgent restoration of physiological abilities.
Why Microglia?

• Most reactive cells in CNS
 – Myeloid origin endows them with toxic effector functions
 – Myeloid origin endows them with repair capacity.
 – Loss of essential function in reactive state mandates urgent restoration of physiological abilities.

• Ripe for therapeutic application:
 – Numerous clinical stage compounds and agents which modify myeloid cell function
 – Problem: Role(s) in disease are complex, largely unknown.
GWAS* AD Variants crowd together in Microglia!

*GWAS: Genome-Wide Association Studies
GWAS AD Variants crowd together in Microglia!
TREM2 variant R47H implicated in multiple neurodegenerative diseases

Table 1
Association analysis of **TREM2** variant c.140G>A (rs75932628; p.R47H) in disease

<table>
<thead>
<tr>
<th>Disorder (n)</th>
<th>Patient, n (%)</th>
<th>Control, n (%)</th>
<th>OR (95% CI)</th>
<th>p-value*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Controls</td>
<td>(1324)</td>
<td>6</td>
<td>(0.45)</td>
<td></td>
</tr>
<tr>
<td>FTD</td>
<td>(609)</td>
<td>13 (2.1)</td>
<td>6 (0.45)</td>
<td>5.064 (1.9, 13.51)</td>
</tr>
<tr>
<td>ALS</td>
<td>(765)</td>
<td>5 (0.7)</td>
<td>6 (0.45)</td>
<td>1.466 (0.43, 4.94)</td>
</tr>
<tr>
<td>PD</td>
<td>(683)</td>
<td>9 (1.3)</td>
<td>6 (0.45)</td>
<td>3.144 (1.1, 9.03)</td>
</tr>
<tr>
<td>PSP</td>
<td>(722)</td>
<td>5 (0.6)</td>
<td>6 (0.45)</td>
<td>1.537 (0.41, 5.78)</td>
</tr>
<tr>
<td>Ischemic Stroke</td>
<td>(448)</td>
<td>3 (0.7)</td>
<td>6 (0.45)</td>
<td>1.506 (0.37, 6.17)</td>
</tr>
</tbody>
</table>

TREM2 and amyloid pathology: Two distinct hypotheses

A. **TREM2-Expressing Macrophages Contribute to Pathological Features of Alzheimer's Disease**

- Infiltrating macrophages that express intact TREM2+ accumulate around Aβ plaques but fail to clear them.

B. **TREM2-Expressing Microglia Protect against Pathological Features of Alzheimer's Disease**

- Activated phagocytic microglia (TREM2+) sense lipids that accumulate during Aβ-42 deposition and more efficiently clear Aβ plaques.

Ramified microglial cell (resting form)

Activated microglial cell

Activated phagocytic microglial cell (ameboid form)
Loss of plaque-associated macrophages in TREM2-KO APPPS1 mice
TREM2 supports microglial homeostasis

TREM2 deficiency:
Microglial dystrophy in old mice

Poliani J Clin Invest 2015
Macrophage proliferation to CSF1-R ligands: Impaired by TREM2 deficiency, increased by BIIB TREM2 compounds

M-CSF

IL-34

DNA Content

BrdU

WT TREM2 KO

M-CSF 7.5 ng/ml

% increase of Proliferation Over Iso Control

5 μg/ml

1 μg/ml

IL-34 30 ng/ml

% increase of Proliferation Over Iso Control

Cmpds (conc)

5 μg/ml

1 μg/ml
Triage Scheme/ Decision Tree to elucidate the TREM2 Targeting Strategy

BIIB TREM2 activating compounds → Evaluate *in vivo* neuropathology → TREM2 inhibitory cmpds

- **Activating TREM2 confers protection?**
 - **Receptor Activation** → TREM2 activating compounds
 - **Negative**: STOP
 - **Positive**: proceed

- **Inhibiting TREM2 confers protection?**
 - **Receptor Inhibition** → TREM2 inhibitory compounds
 - **Negative**: STOP
 - **Positive**: proceed

Therapeutic Hypothesis Selection

Begin Transition Candidate Selection
Biogen’s BBB model: A brain capillary *in vitro*

- Test strategies for delivery across BBB
- Test effects of (for example) amyloid on BBB integrity
- Mechanisms of leukocyte invasion across BBB
Vision for neuroimmunology in neurodegeneration

Biogen 2015 R&D Day
3rd November, 2015

Thanks for your attention!
Biogen 2015 R&D Day

Q&A
Presenter Biographies
George A. Scangos, Ph.D., is our Chief Executive Officer and has served in this position and as a member of our Board of Directors since July 2010. From 1996 to July 2010, Dr. Scangos served as the President and Chief Executive Officer of Exelixis, Inc., a drug discovery and development company, where he continues to serve on the board. From 1993 to 1996, Dr. Scangos served as President of Bayer Biotechnology, where he was responsible for research, business development, process development, manufacturing, engineering and quality assurance of Bayer’s biological products. Before joining Bayer in 1987, Dr. Scangos was a professor of biology at Johns Hopkins University for six years, where he is still an adjunct professor. Dr. Scangos served as non-executive Chairman of Anadys Pharmaceuticals, Inc., a biopharmaceutical company, from 2005 to July 2010 and was a director of the company from 2003 to July 2010. He also served as the Chair of the California Healthcare Institute in 2010 and was a member of the board of the Global Alliance for TB Drug Development until 2010.

Dr. Scangos is Chairman-Elect of the Board of Directors of Pharmaceutical Research and Manufacturers of America (PhRMA), a member of the Boards of Trustees of the Boston Museum of Science and the Biomedical Science Careers Program, and a member of the National Board of Visitors of the University of California, Davis School of Medicine. Dr. Scangos is also on the Board of Directors of Agilent Technologies, Inc., a provider of bioanalytical and electronic measurement solutions.

Alfred W. Sandrock, Jr., M.D., Ph.D., is our Group Senior Vice President and Chief Medical Officer and has served in this position since May 2013. From February 2012 to April 2013, Dr. Sandrock served as our Senior Vice President, Chief Medical Officer. Since joining us in 1998, Dr. Sandrock has held several senior executive positions, including Senior Vice President of Development Sciences, Senior Vice President of Neurology Research and Development, and Vice President of Clinical Development, Neurology. Dr. Sandrock received his B.A. in human biology from Stanford University, an M.D. from Harvard Medical School, and a Ph.D. in neurobiology from Harvard University. He completed an internship in medicine, a residency and chief residency in neurology, and a clinical fellowship in Neuromuscular Disease and Clinical Neurophysiology (electromyography) at Massachusetts General Hospital.
Biogen Investor R&D Day 2015

Spyros Artavanis-Tsakonas is Senior Vice President and Chief Scientific Officer at Biogen, and has served in this position since May 2013. In 1998, Dr. Artavanis-Tsakonas joined the Harvard Faculty as Professor of Cell Biology at the Harvard Medical School, where, since 2015, he continues his affiliation as a Professor Emeritus of Cell Biology. From 1999 to 2007, Spyros was the K.J. Isselbacher–P. Schwartz Professor at the Massachusetts General Hospital Cancer Center, and is the founding Director of the Developmental and Regenerative Biology Program at Harvard Medical School. During 1983-1998, Dr. Artavanis-Tsakonas was at Yale, where his most recent appointment was as Professor of the Departments of Cell Biology and Biology, and a Howard Hughes Medical Institute Investigator. Spyros also served as the Director of the Biological Sciences Division at Yale. In 1999, he was elected Professor at the Collège de France, holding the Chair of Biology and Genetics of Development. Since 2012, Dr. Artavanis-Tsakonas is Professeur honoraire at the same Institution, and he is also the Founding Director (2007-2009) of the Department of Genetics and Developmental Biology at the Institut Curie, Paris.

Dr. Artavanis-Tsakonas is a co-founder of Exelixis Pharmaceuticals, Inc., Cellzome (acquired by GlaxoSmithKline in 2012), and Anadys Pharmaceuticals, Inc. (acquired by Hoffman-La Roche in 2011). He is also President and co-founder of Fondation Santé.

Dr. Cadavid studied Medicine and Surgery at the Pontificia Universidad Javeriana in Bogotá, Colombia, Microbiology and Immunology at The University of Texas Health Science Center in San Antonio, Texas, Clinical Neurology at Georgetown University and Neuropathology at the Armed Forces Institute of Pathology, both in Washington, DC. He was for nearly 10 years a Faculty Member in the Department of Neurology and Neuroscience at Rutgers-New Jersey Medical School in Newark, NJ and since 2008 he has been a member of the Neurology Clinical Development Group at Biogen and between 2008 and 2015 a Consultant at the Center for Immunology and Inflammatory Diseases at Massachusetts General Hospital in Boston. The main focus of his research career has been on Borreliar infections and multiple sclerosis. He has published over 70 peer reviewed papers and over 10 book chapters. He is currently the Medical Director of the anti-LINGO-1 (BIIB033) clinical development program for CNS remyelination and Senior Director of the CNS Repair Group at Biogen in Cambridge, MA. He is licensed to practice Medicine in Massachusetts, and a Fellow Member of both the American Academy of Neurology and the American Neurological Association.
Samantha Budd Haeberlein, Ph.D., is our Vice President, Neurology Clinical Development. Samantha has more than fifteen years of pharmaceutical industry experience across Research, Translational Science/Medicine and Clinical Development. Samantha is a results oriented and successful leader of global, multi-disciplinary project teams and line-managed functions. She is currently leading Global Clinical Development for Alzheimer’s disease at Biogen, while overseeing the Pain portfolio through an externalized model. Previously, she held roles at AstraZeneca in the US, Canada and Sweden most recently as Vice President of the Translational Science & Global Program Lead in Alzheimer’s disease. Samantha helped build the Neuroscience Virtual R&D group an experimental business model, and successfully led an Alzheimer’s project through to Ph3 in the virtual setting. Prior to that Samantha led multi-disciplinary teams in Research, Strategy, Diagnostic and Clinical Development. Samantha has served on the Board for the Stockholm Brain Institute, and currently serves as an Advisory Board Member to Quartet Medicine, and AlzForum. Samantha has a BSc and PhD in Biochemistry from the University of Dundee in Scotland, and conducted research at Brigham & Women’s Hospital Harvard Medical School in Boston, and at The Burnham Institute in San Diego.

Dr. Jeffrey Sevigny is a Senior Medical Director at Biogen Idec in Cambridge, MA. Dr. Sevigny’s research focuses on the development of biomarkers and therapeutics for neurodegenerative disorders. Dr. Sevigny earned his MD from Tufts University and completed Neurology residency and fellowship in Aging & Dementia and Neuro-epidemiology at Columbia University. Dr. Sevigny previously worked at Novartis AG and Merck and Co, and prior to joining industry was Assistant Professor of Neurology at Albert Einstein School of Medicine and at Columbia University.
Wildon Farwell, MD, MPH, is Senior Medical Director in Clinical Development at Biogen. In his role, Dr. Farwell currently oversees the clinical development program for Spinal Muscular Atrophy (SMA) at Biogen. Dr. Farwell was also a Medical Director in the Safety and Benefit Risk function at Biogen where he participated in the Hemophilia and ALS programs. Prior to coming to Biogen in 2010, Dr. Farwell was Assistant Professor of Medicine at Harvard Medical School and on faculty at Brigham and Women’s Hospital and the VA Boston Healthcare System. In his research career, Dr. Farwell has explored novel risk factors and developed and conducted innovative, large-scale clinical trials in cardiovascular disease, diabetes mellitus, and cancer. He also exhibited leadership as an Associate Director of the Harvard Medical School Fellowship in General Medicine and Primary Care. Wildon holds a medical degree from University of Missouri, Columbia and has a MPH in Clinical Effectiveness from Harvard School of Public Health. He completed his residency in internal medicine at Indiana University, Indianapolis and fellowship training in general internal medicine at Harvard Medical School.

Jeff Bornstein is currently overseeing the clinical development of MT-1303 in inflammatory bowel disease. Jeff was born and raised in Montreal, Canada, and he received his MD and completed an Internal Medicine residency at McGill University. He then completed a Gastroenterology fellowship at Duke University. After fellowship, Jeff remained at Duke as an assistant professor, focusing on hepatitis C and liver transplantation. In 2002, Jeff left Duke to join Maxim Pharmaceuticals, when he was responsible for a hepatitis C development program. Next, he served as a Director, Clinical Development at Elan Pharmaceuticals, where he was the lead physician for the phase 3 natalizumab program in Crohn’s Disease. After his time at Elan, Jeff served as Vice President of Clinical Development at both Tioga pharmaceuticals and Ocrea Therapeutics, before joining Gilead Sciences as a Senior Director in Liver Disease Therapeutics in 2010. At Gilead, Jeff played a role in the development of sofosbuvir for hepatitis C, contributed to the advancement of tenofovir for hepatitis B, helped launch the MMP-9 program for ulcerative colitis and lead the development of simtuzumab for liver fibrosis. Jeff joined Biogen as a Senior Director in Fibrosis and Tissue injury in 2014. He initially worked on the IPF program, and has now transitioned to immunology and the IBD program.
Donald R. Johns, MD is Vice President and Head of the Amyotrophic Lateral Sclerosis innovation Hub (ALS iHub) in the Development Sciences organization at Biogen. The ALS iHub team works with both internal and external collaborators to catalyze innovative and effective drug development to transform the lives of ALS patients. Donald joined Biogen in July 2014 after ten years as Vice President, Global Head, Neuroscience Translational Medicine at Novartis. He is a board-certified neurologist and scientific leader with 25+ years of experience with rare and orphan diseases. He was on the faculty in Neurology at Johns Hopkins University Medical School and Harvard Medical School. At HMS he was an Associate Professor of Neurology and Ophthalmology and was the founding Director of the Division of Neuromuscular Disease at Beth Israel Deaconess Medical Center, Department of Neurology. His scientific work focused on mitochondrial dysfunction and human disease. Donald graduated from Vanderbilt University and Yale Medical School and completed his residency and fellowship in Neurology at Massachusetts General Hospital.

Jesse M Cedarbaum, MD obtained his medical degree from Yale Medical School, where he is currently Professor (Adjunct) of Psychiatry. He trained in Neurology at New York Hospital-Cornell Medical Center and, after residency, led the Parkinson’s and Movement Disorders program there from 1983-1990. In 1990 Dr. Cedarbaum joined Regeneron, where he led the establishment of the Clinical Development function and served as Program Director and later Vice President of Clinical Affairs from 1990-2007. He subsequently held senior positions in Clinical Development at Elan, Cytokinetics, and Bristol-Myers Squibb. He joined Biogen in April 2014. Dr. Cedarbaum has authored or co-authored over 90 peer-reviewed scientific publications, most in the area of neurotherapeutics. He is a Fellow of both the American Academy of Neurology and the American Neurological Association. Dr. Cedarbaum was the 2014-15 chair of the Alzheimer’s Disease Neuroimaging Initiative (ADNI) Private Partner Scientific Board, and currently chairs the Industry Scientific Advisory Board for the Michael J. Fox Foundation’s Parkinson Progression Marker Initiative (PPMI).
Olivier Danos is a pioneer in the field of gene therapy, and has dedicated his career to advancing the use of this technology to develop life-saving therapies for patients. Olivier joined Biogen in 2014 from Kadmon Pharmaceuticals, where he served as SVP, Molecular Medicine, Synthetic Biology and Gene Regulation. Over the past twenty years, he has played a number of leadership roles in cell and gene therapy as director of the Gene Therapy Consortium of the University College of London, at the Necker Hospital – Enfants Malades in Paris, as chief scientific officer of Genethon and as senior director of research at Somatix Therapy Corporation. He has held senior research positions at the French National Centre for Scientific Research (CNRS) and at the Institut Pasteur in Paris. Olivier is the former president and a founding member of the European Society of Gene and Cell Therapy. Olivier received a Master’s in Genetics and Molecular Biology at University of Paris Orsay, and his Ph.D. in Biology at the Pasteur Institute and University of Paris Diderot.

Richard Hargreaves, Vice President, Neuropharmacology and Biomarkers- Extensive imaging, biomarker, drug discovery and development experience in neurosciences. VP Worldwide Head of Imaging (Merck Research Laboratories MRL) – built medical and preclinical imaging internally and externally for all therapeutic franchises across imaging modalities. VP Worldwide Discovery Head for Neuroscience (MRL) – responsible for strategic and scientific direction and prioritization including external scientific affairs, licensing and academic collaborations for the neuroscience drug discovery pipeline. Advanced drug candidates and novel PET imaging agents to the clinic for Alzheimer's disease, cognition, migraine headache, anxiety, depression, schizophrenia, chemotherapy palliation, pain and sleep wake circadian disorders. Led the discovery teams that contributed to the development and registration of MAXALT® (rizatriptan) for migraine, EMEND® (aprepitant) and IVEMEND® (fosaprepitant) for prevention of chemotherapy-induced nausea and vomiting and the department producing Belsomra® (suvorexant) for insomnia. Published extensively with >200 papers and chapters and 3 books co-edited and on neuroscience drug discovery, translational biomarkers and the use of biomedical imaging in drug discovery and development. Scientific Research Fellowship (adjunct) Children’s Hospital Boston, Harvard Medical School, Gary Neil Award for "Innovation in Drug Development" by the American Society of Clinical Pharmacology and Therapeutics for work on imaging in drug discovery and development and the first Sir James Black Award for Drug Discovery from the British Pharmacological Society.
Ajay Verma is a Vice President at Biogen for Biomarkers and Experimental Medicine. Ajay leads efforts to develop, validate, and implement human experimental platforms and biomarker technologies for decision making in clinical trials. These include nuclear and MR imaging approaches, electrophysiology, organ physiology, functional measurements, and experimental human models. Prior to starting up the Experimental Medicine group Ajay was the therapeutic area head for Neurodegenerative diseases at Biogen. Ajay studied zoology at the University of Maryland and received his MD and PhD from The Johns Hopkins University. His neurology training and service was at the Walter Reed Army Medical Center and the National Naval Medical Center where he was a staff Neurologist for 11 years. He was also a tenured Professor at the Uniformed Service University of the Health Sciences, the US Military’s Medical School, where he directed basic research in Neurology. Since leaving the Army as a Lt. Colonel in 2006, Ajay has worked at Merck & Co., Inc. and Novartis Pharmaceuticals prior to joining Biogen. Ajay also currently serves on the Innovation Board of the X Prize Foundation.

Dr. Rudick graduated from Case Western Reserve University School of Medicine in 1975. Following internship and residency in Medicine at the University of Connecticut, Dr. Rudick trained in Neurology at the University of Rochester. During a post-doctoral research fellowship and early career development at the University of Rochester, his studies focused on neurologic consequences of immune disease in animals and immunologic abnormalities in multiple sclerosis (MS) patients. In 1987, Dr. Rudick became Director of the Mellen Center for Multiple Sclerosis at Cleveland Clinic. Driven by a vision of compassionate multidisciplinary MS care integrated with clinical and translational research, the Mellen Center developed an international reputation for excellence in MS treatment, search, and education. Dr. Rudick’s research has focused on experimental therapeutics, including innovative approaches to measuring immunologic, clinical, and imaging features of the disease for use in clinical research and practice. He played key roles in development of IFNβ-1a (Avonex) and natalizumab (Tysabri) for relapsing forms of MS. For 30 years, his clinical practice focused on diagnosis and management of MS patients. In addition to directing the Mellen Center, Dr. Rudick was the Chief Clinical Research Officer at Cleveland Clinic from 2001 – 2007, Vice Chairman for Research and Development in the Neurological Institute at Cleveland Clinic from 2007 – 2014, and Co-Principal Investigator of the city wide NIH Clinical and Translational Science Collaborative (CTSA) from 2006 – 2014. In 2014, Dr. Rudick transitioned to Biogen, where he is Vice President, Development Science, and Director of the Value Based Medicine MS Innovation Hub. The VBM iHub is charged with enhancing MS care through technology, innovation, and continuous learning.
Simon Tate has 26 years of experience in drug discovery and development, 21 years of which in ion channels and pain. He is currently Vice President and Head of the Pain Therapeutic Area at Biogen. Simon transitioned to this role at Biogen following the acquisition of Convergence Pharmaceuticals, where he was the Chief Scientific Officer and one of the founders. Simon led Convergence to be widely recognized as a leading company in the field of pain and ion channel drug discovery and development. In 2014, Convergence reported successful clinical proof of concept studies with clinically significant efficacy and a good overall safety profile, in both trigeminal neuralgia and pain associated with radiculopathy. Simon was instrumental to the acquisition of Convergence Pharmaceuticals’ clinical assets from GSK, where he was previously Vice President, Pain and Epilepsy Discovery Performance Unit. During his time at GSK, Simon was a member of the senior leadership teams in both Neurology and Psychiatry and led several cross functional departments in discovery and early development.

Dr. Elkins received his medical degree from Harvard Medical School and then completed residency and fellowship training in neurology and neurovascular medicine at the University of California, San Francisco (UCSF). After completing his medical education, Dr. Elkins joined the neurology faculty of UCSF in 2003 where he was principal investigator on grants sponsored by the NIH/NINDS and the American Heart Association focused on the effects of silent cerebrovascular pathology on cognitive function. He received a Master’s degree in clinical research from UCSF and the Siekert award for new investigators from the American Stroke Association. Dr. Elkins joined Biogen in 2007 and has been the global clinical development lead for daclizumab, Tecfidera and the Tysabri Stroke programs. Dr. Elkins has published extensively on the subjects of cerebrovascular disease, cognition, multiple sclerosis, and clinical trial design. He is a member of the American Heart Association and the American Academy of Neurology.
Christopher E. Henderson, Ph.D.- After training in Cambridge (UK) and spending much of his career in France, Chris Henderson moved in 2005 to Columbia University in New York, where he co-founded the Center for Motor Neuron Biology and Disease, a new initiative in translational neuroscience that created a continuum from research on motor neurons through to clinical research on the motor neuron diseases ALS (amyotrophic lateral sclerosis) and SMA (spinal muscular atrophy). He was also director of the Columbia Stem Cell Initiative, a group of 120 laboratories across the university using stem cells to better understand or treat human disease. While still at Columbia he became director of Target ALS, a privately-funded consortium that has stimulated industry investment in ALS research by supporting cutting-edge translational research and nationwide core facilities in academia. In 2014, Trophos - a French biotech of which he was an academic founder - announced positive clinical trial data in patients with SMA. This provided major motivation to become more actively engaged in the biotech world and in October 2014, Henderson moved to Biogen (Cambridge, MA) to lead the neuroscience research program focused on Alzheimer’s disease, Parkinson’s disease, ALS and multiple sclerosis.

Richard M Ransohoff served at the Cleveland Clinic as Director of the Neuroinflammation Research Center in the Lerner Research Institute (2005-14); a professor of molecular medicine at the Cleveland Clinic Lerner College of Medicine (from 2003, now adjunct); and a staff neurologist in the Mellen Center for MS Treatment and Research (1984-2014). Dr Ransohoff joined Biogen (Cambridge, MA) in 2014 as Senior Biogen Research Fellow, Neuroimmunology. Among his awards are a Physician’s Research Training Award from the American Cancer Society (1984-86); a Clinical Investigator Development Award from the National Institutes of Health (NIH; 1988-1993); the Harry Weaver Neuroscience Scholarship of the National MS Society (1987-1992); the John and Samuel Bard Medal in Science or Medicine (2002); the Cleveland Clinic Lerner Research Institute’s Award for Excellence in Science in 2006; and the Cleveland Clinic’s Scientific Achievement Award in Basic Science (2009). He was invited to give the FE Bennett Memorial Lecture to the American Neurological Association in 2009. He has been cited in *Best Doctors in America* for his expertise in the clinical care of patients with multiple sclerosis (MS). The American Academy of Neurology and the National Multiple Sclerosis Society awarded Dr Ransohoff the 2012 John Dystel Prize for MS Research. Dr Ransohoff served as regular member and chair on study sections of the NIH and NMSS and is currently a regular member of the CMBG Study Section. He is a member of the American Academy of Neurology, the American Neurological Association, and the American Association of Physicians and is a Fellow of the American Association for the Advancement of Science.
Carmen Bozic MD is Senior Vice President of Global Development at Biogen. Her department is responsible for developing and obtaining regulatory approvals. The functions in her department include global clinical development, regional clinical development in Japan and Europe, safety and benefit risk management, global clinical operations, biostatistics, medical writing, data management and statistical programming. Dr. Bozic is an experienced drug development leader with over 17 years of biopharmaceutical industry experience with progressively increasing responsibilities in multiple functions and therapeutic areas. As the former Global Head of Safety and Benefit-Risk Management at Biogen for several years, she led a world-class organization that was accountable for patient safety for the pre and post-approval pipeline and addressed complex issues in safety and benefit-risk management. Dr. Bozic has also overseen functions accountable for the regulatory filing and approvals of multiple therapies, including TECFIDERÁ (dimethyl fumarate) and PLEGRIDY (pegylated interferon beta-1a) for multiple sclerosis, as well as ELOCTATE (Factor VIII Fc fusion protein) and ALPROLIX (Factor IX Fc fusion protein) for the treatment of severe Hemophilia A and B in multiple countries. She led the development of the risk management plan for TYSABRI® (natalizumab) and presented on this topic at an FDA Advisory Committee, leading to the approval of TYSABRI for the treatment of multiple sclerosis. She has also served as the industry representative to the FDA’s Risk Communication Advisory Committee and is a member of PhRMA’s Clinical and Preclinical Development Committee. She received an MD degree and did her residency in internal medicine at McGill University in Montreal, Canada, completed a fellowship in Pulmonary and Critical Care Medicine at Brigham and Women’s Hospital in Boston, and was an Associate Physician at Beth Israel Deaconess Medical Center and Harvard Medical School before joining the biopharmaceutical industry. Dr. Bozic is a frequent lecturer and speaker on benefit-risk and other drug development topics nationally and internationally.