The importance of a staging approach to psychiatric illness in understanding the role of biomarkers and treatment response

A C McFarlane AO
Professor of Psychiatry
Centre for Traumatic Stress Studies
The University of Adelaide
Background to presentation

• 28 year follow-up of children exposed to Ash Wednesday disaster in 1983 and a 9 year follow up of 500 firefighters

• 25 year follow-up of lead-exposed cohort with 5 time points of assessment in childhood (Port Pirie Study)

• Longitudinal study of 1,166 trauma victims over 6 years

• Studies of entire Australian Defence Force (n=24,481) and a 5 year follow up

• Pre/post deployment study of MEAO veterans (n=1,690)

• Multiple medico-legal assessments of military /emergency service personnel with access to all medical records
Correspondence

It Is Time to Address the Crisis in the Pharmacotherapy of Posttraumatic Stress Disorder: A Consensus Statement of the PTSD Psychopharmacology Working Group

To the Editor:

There is an urgent need to address a critical lack of advancement in the psychopharmacologic treatment of posttraumatic stress disorder (PTSD). The clinical, social, and financial burden of ineffectively treated PTSD is enormous (1–6). The impact of PTSD morbidity and mortality is further magnified by its substantial disruptions in family, workplace, and societal contexts (7). For the federal funding agencies in research on medical treatment of military personnel and veterans with PTSD have yet to bear fruit in the form of new validated pharmacotherapies for PTSD. Paradoxically, this is a time of tremendous progress in the basic neuroscience of stress and PTSD that could inform the identification of novel therapeutic targets (14,15). There is a longstanding translational neuroscience tradition in PTSD research (16,17). However, recent developments in the genetics and epigenetics of PTSD (18–20), progress with animal models (21), the emergence of the first molecular analyses of postmortem brain tissue from people with PTSD (22), an expanding number of brain molecular targets probed with positron emission tomography imaging (23), the refinement of
Table 6. Top Therapeutic Targets for PTSD From Expert Group (N = 27)

<table>
<thead>
<tr>
<th>Target</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>NMDA Receptor Antagonists</td>
<td>78</td>
</tr>
<tr>
<td>Cannabinoid Receptor Modulators</td>
<td>70</td>
</tr>
<tr>
<td>Glucocorticoid Receptor Agonists</td>
<td>58</td>
</tr>
<tr>
<td>Non-SRI Antidepressants</td>
<td>50</td>
</tr>
<tr>
<td>Opioid Receptor Agonists</td>
<td>25</td>
</tr>
<tr>
<td>Alpha-1 Adrenergic Receptor Agonists</td>
<td>21</td>
</tr>
<tr>
<td>5HT<sub>2</sub>-D<sub>2</sub> Receptor Antagonist (Other Than Risperidone)</td>
<td>20</td>
</tr>
<tr>
<td>Riluzole</td>
<td>18</td>
</tr>
<tr>
<td>Alpha-2 Adrenergic Receptor Agonists</td>
<td>18</td>
</tr>
<tr>
<td>NPY Receptor Modulators</td>
<td>10</td>
</tr>
<tr>
<td>Glucocorticoid Low-Activity Partial Agonists And/Or Antagonist</td>
<td>10</td>
</tr>
<tr>
<td>Orexin Receptor Antagonists</td>
<td>9</td>
</tr>
<tr>
<td>NMDA Receptor Coagonists</td>
<td>9</td>
</tr>
<tr>
<td>Anticonvulsants</td>
<td>8</td>
</tr>
<tr>
<td>D<sub>2</sub> Receptor Agonists</td>
<td>8</td>
</tr>
</tbody>
</table>

D₂, dopamine type 2; NMDA, N-methyl-D-aspartate; NPY, neuropeptide Y; PTSD, posttraumatic stress disorder; SRI, serotonin reuptake inhibitor; 5-HT₂, 5-hydroxytryptamine-2.
Meta Analysis of Treatment in Military Populations

- Mean post treatment scores for CPT and PE remained at or above clinical criteria for PTSD
- Approximately 66% of patients retained their PTSD diagnosis after treatment (range 60-72%)
- Prolonged exposure marginally superior compared to non-trauma focused psychotherapies
- Need to improve existing treatments and test novel evidence based treatments
 - Steenkamp et al JAMA 2015, 314;489-500
The efficacy of recommended treatments for veterans with PTSD: A metaregression analysis

Joris F.G. Haagen a,*, Geert E. Smid c, Jeroen W. Knipscheer a, c, Rolf J. Kleber a, b

a Department of Clinical & Health Psychology, Utrecht University, Utrecht, The Netherlands
b Arq Psychotrauma Expert Group, Diemen, The Netherlands
c Foundation Centrum '45 [partner in Arq, Diemen, The Netherlands
Curve of effect size versus symptom severity for psychotherapy for PTSD

Fig. 4. Graph of quadratic regression of pretreatment PTSD symptom severity level as percentages on effect size (Hedges’ g), whilst controlling for ‘treatment allocation’.
The need for new biologically based treatment approaches supported by evidence

The chronicity and disability associated with PTSD
Overview of Biological Themes in PTSD

ROGER K. PITMAN

VA Medical Center
Manchester, New Hampshire 03103

Department of Psychiatry
Harvard Medical School
Boston, Massachusetts

Biology is truly a land of unlimited possibilities. We may expect it to give us the most surprising information and we cannot guess what answers it will return in a few dozen years to the questions we have put to it. They may be of a kind which will blow away the whole of our artificial structure of hypotheses (Sigmund Freud, 1920).
1. The abnormality was preexisting and increased the risk of the individual’s being exposed to a traumatic event.
2. The abnormality was preexisting and increased the individual’s vulnerability to develop PTSD upon the traumatic exposure.
3. The traumatic exposure caused the abnormality, and the abnormality caused the PTSD.
4. The traumatic exposure caused the PTSD, and the PTSD caused the abnormality.
5. The traumatic event independently caused both the abnormality and the PTSD.
6. The traumatic exposure caused PTSD, the PTSD caused a sequel or complication, and the sequel or complication caused the abnormality.
Biomarkers – varying indications

- Causal mechanisms (genetic or neurohormonal)
- The consequences of pathophysiology
 - Cognitive, structural or physiological
- Both e.g. inflammation
- May have predictive value and/or indicative of novel therapeutic interventions.
The need for clinical staging in PTSD

What does a biomarker indicate? – staging is a method for clarifying the issue of longitudinal course
Staging model of disorder

- Stage 0
 - Trauma exposed asymptomatic but at risk

- Stage 1a
 - Undifferentiated symptoms of mild anxiety and distress

- Stage 1 b
 - Subsyndromal distress with some behavioural and functional decline
Staging model of disorder

- Stage 2
 » First episode of full threshold symptoms that has different trajectories

- Stage 3
 » Persistent symptoms which may fluctuate with ongoing impairment

- Stage 4
 » Severe unremitting illness of increasing chronicity
Biomarkers and clinical staging in psychiatry McGorry et al 2014

Figure 1 Clinical staging model for mental disorders and putative biomarkers. HPA – hypothalamic-pituitary-adrenal
Staging Model Bipolar Disorder

Stage progression:

- Stage 0: Asymptomatic
- Stage 1a: Non-specific distress
- Stage 1b: Sub-threshold high-risk
- Stage 2: First episode
- Stage 3a: Recurrence/persistence
- Stage 3b: First threshold relapse
- Stage 3c: Multiple relapses
- Stage 4: Treatment resistance

Kindling Allostatic load | Treatment response | Functional impairment | Prognosis | Cognition and imaging changes | Neuroprogression | Potential therapeutic interventions

Mental health literacy, self-help, lifestyle (diet, smoking)
Lifestyle modification, substance abuse reduction, CBT, supportive counselling, nutraceuticals
1a plus pharmacotherapy
1b plus phase-specific drug or mood stabilizer, case management, engagement, psychoeducation, psychotherapy
2 plus emphasis on maintenance medication and psychosocial strategies for full remission
2a plus relapse prevention strategies
3b plus combination of mood stabilizers
3c plus clozapine, functional/cognitive remediation, ACT

Figure 1: Staging in bipolar disorder. CBT – cognitive behaviour therapy, ACT – assertive community treatment

Berk et al World Psychiatry 2017;16:236-244
The importance of the longitudinal course

The changes in reactivity over time is the critical issue
Predicting PTSD

- Patients admitted to hospital after traumatic injury
- N = 1,166
- Sites: Sydney (2 hospitals), Melbourne (2 hospitals), Adelaide (1 hospital)
- Assessments: first week, 3, 12, 24 & 60 month follow up
 - Bryant, Creamer, Silove, McFarlane, O'Donnell, van Hooff
How Many People with ASD Developed PTSD 12 months later?

Rates of PTSD in those with and without an Acute Stress Disorder at 12 months?

Relationship of PTSD and ASD

- Individuals who develop an acute stress disorder have a much greater risk of chronic PTSD
- The majority of individuals with PTSD do not have an acute disorder
- ASD is not a necessary antecedent for PTSD

- Bryant et al 2012 J Psychiatric Res
The issue of delayed onset PTSD
Trajectories of PTSD after traumatic injury Bryant et al 2015
Progression of cases at 24 months in accident and work injuries (PTSD Cases n=96)

- At 3 months 35.9% had full diagnosis
 - 44.1% reported minimal symptoms
- At 12 months 49% had full diagnosis
 - 26.7% reported minimal symptoms

- There is a progressive emergence of disorder at time which means there is a need for repeated reassessment - moves through a subsyndromal stage
- Coping in the immediate aftermath does not mean an individual will not develop PTSD or chronic pain later

- O’Donnell et al 2013 Psychological Medicine
Millennium Cohort Study: Pre/Post Deployment Samples

- 3393 with single deployment
- 4394 with multiple deployment
- Predeployment and 3 year follow up
- Latent growth mixture modelling

» Banonno et al Brit J Psychiatry 2012
The need for clinical staging in PTSD

- Different phenotypes that need to be addressed in treatment
- Staging is a method for clarifying the issue of longitudinal course and the changing neurobiology

McFarlane et al Clinical Psychiatric Reports 2017
Staging model of PTSD

0. Trauma exposed no symptoms but at greater risk with further exposure
1a. Minor symptoms
1b. Subsyndromal PTSD – similar to PTSD
2. First episode of brief duration
3. More enduring or relapsing disorder following treatment
4. Chronic, severe and treatment unresponsive
Staging model of disorder

<table>
<thead>
<tr>
<th>Stage</th>
<th>Presentation</th>
<th>Example of possible neurobiological changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stage 0</td>
<td>Trauma exposed asymptomatic but at risk</td>
<td>Down regulation of glucocorticoid receptor sensitivity, increased amygdala reactivity, 5FKH genotype</td>
</tr>
<tr>
<td>Stage 1a</td>
<td>Undifferentiated symptoms of mild anxiety and distress</td>
<td>Inflammatory cytokine activation, decreasing response inhibition in the frontal cognitive systems</td>
</tr>
<tr>
<td>Stage 1b</td>
<td>Subsyndromal distress with some behavioural and functional decline</td>
<td>Increased physiological reactivity to trauma related stimuli and startle response, prolonged autonomic arousal on provocation</td>
</tr>
</tbody>
</table>
Repeated hits from multiple stressors

Sensitization

Loss of reactivity and increased physiological load

normal adaptive response
Systems vulnerable to sensitization

- Hypothalamic pituitary adrenal axis
- Medial prefrontal cortex - amygdala network
- Corticothalamic networks
- Locus coeruleus projections
- Vagal / parasympathetic systems
- Startle response
- Immune / cytokine systems
Staging model of disorder

<table>
<thead>
<tr>
<th>Stage</th>
<th>Presentation</th>
<th>Example of possible neurobiological changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stage 2</td>
<td>First episode of full threshold symptoms that has different trajectories</td>
<td>Early and potentially reversible neurobiological disinhibition of frontolimbic circuitry</td>
</tr>
</tbody>
</table>

McFarlane et al Clinical Psychiatric Reports 2017
Role of peripheral inflammation

Peripheral inflammation

CNS neural function

Restless sleep, fatigue, low energy

White et al, Brain Behaviour and Immunity, 2016
Antidepressants act on peripheral inflammation

Hashimoto Int J Mol Sci 2015
CRP Predicts Differential Response to SSRI vs. SSRI+Bupropion

Jah MK et al. *Psychoneuroendocrinol* 2017; 78: 105-13
Staging model of disorder

<table>
<thead>
<tr>
<th>Stage</th>
<th>Presentation</th>
<th>Example of possible neurobiological changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stage 3</td>
<td>Persistent symptoms which may fluctuate with ongoing impairment
3a Incomplete remission of first episode
3b Recurrence or relapse of PTSD and persistent impairments
3c Multiple relapses or worsening following incomplete treatment response</td>
<td>Decreased anterior cingulate and hippocampal volume, hypertension and metabolic syndrome.</td>
</tr>
</tbody>
</table>
Staging model of disorder

<table>
<thead>
<tr>
<th>Stage</th>
<th>Presentation</th>
<th>Example of possible neurobiological changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stage 4</td>
<td>Severe unremitting illness of increasing chronicity with substantial disability</td>
<td>High allostatic load, high levels of inflammation, medical comorbidities, entrenched sensitization of a range of neurobiological systems</td>
</tr>
</tbody>
</table>

McFarlane et al Clinical Psychiatric Reports 2017
Therapeutic Stance of Staging

- Emphasis on progression or transition
- Not inevitable
- Earlier stages of treatment have fewer complications and greater tolerability
- Cross sectional and longitudinal biomarkers for the different phenotypes of the disorder
- Different treatment strategies at different stages
The challenge of biomarkers

- Prediction of risk of onset and chronicity
- Potential diagnostic value
- Development of novel treatments on the basis of identified mechanisms of pathology
- Primary question is about the longitudinal course of the patterns of outcome – may have different biomarkers
Conclusion

- PTSD has multiple stages and treatment needs to be based on an assessment of the individual pathology—not one size fits all.
- Need for developing more effective biological based treatments that are supported by evidence.
- Timing of an intervention may be critical to its effectiveness.
THANK YOU